
Isabel Suelves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1646933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry. International Journal of Hydrogen Energy, 2005, 30, 293-300.	3.8	188
2	Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: influence of operating conditions on catalyst deactivation and carbon characteristics. International Journal of Hydrogen Energy, 2005, 30, 1555-1567.	3.8	155
3	Analysis of the strategies for bridging the gap towards the Hydrogen Economy. International Journal of Hydrogen Energy, 2016, 41, 19500-19508.	3.8	148
4	Characterization of NiAl and NiCuAl catalysts prepared by different methods for hydrogen production by thermo catalytic decomposition of methane. Catalysis Today, 2006, 116, 271-280.	2.2	122
5	The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon, 2010, 48, 4421-4431.	5.4	115
6	High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition. International Journal of Hydrogen Energy, 2011, 36, 7832-7843.	3.8	111
7	Enhanced oxygen reduction activity and durability of Pt catalysts supported on carbon nanofibers. Applied Catalysis B: Environmental, 2012, 115-116, 269-275.	10.8	109
8	Hydrogen production by methane decarbonization: Carbonaceous catalysts. International Journal of Hydrogen Energy, 2007, 32, 3320-3326.	3.8	107
9	Hydrogen production by thermocatalytic decomposition of methane over Ni-Al and Ni-Cu-Al catalysts: Effect of calcination temperature. Journal of Power Sources, 2007, 169, 150-157.	4.0	104
10	Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. International Journal of Hydrogen Energy, 2010, 35, 9934-9942.	3.8	102
11	Production of hydrogen and carbon nanofibers by thermal decomposition of methane using metal catalysts in a fluidized bed reactor. International Journal of Hydrogen Energy, 2007, 32, 4821-4829.	3.8	99
12	Decomposition of methane over Ni-SiO2 and Ni-Cu-SiO2 catalysts: Effect of catalyst preparation method. Applied Catalysis A: General, 2007, 329, 22-29.	2.2	90
13	Kinetic study of the thermal decomposition of methane using carbonaceous catalysts. Chemical Engineering Journal, 2008, 138, 301-306.	6.6	89
14	Carbonaceous materials as catalysts for decomposition of methane. Chemical Engineering Journal, 2008, 140, 432-438.	6.6	87
15	Carbon nanofiber supported Mo2C catalysts for hydrodeoxygenation of guaiacol: The importance of the carburization process. Applied Catalysis B: Environmental, 2018, 239, 463-474.	10.8	84
16	Thermo catalytic decomposition of methane over Ni–Mg and Ni–Cu–Mg catalysts. Applied Catalysis A: General, 2007, 333, 229-237.	2.2	78
17	Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel Processing Technology, 2011, 92, 1480-1488.	3.7	77
18	Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: Thermogravimetric analysis and scaling-up of Fe–Mo catalysts. International Journal of Hydrogen Energy, 2014, 39, 3698-3709.	3.8	77

#	Article	IF	CITATIONS
19	Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends. International Journal of Hydrogen Energy, 2012, 37, 11495-11503.	3.8	75
20	Hydrogen production by thermo-catalytic decomposition of methane: Regeneration of active carbons using CO2. Journal of Power Sources, 2007, 169, 103-109.	4.0	73
21	Study of the deactivation mechanism of carbon blacks used in methane decomposition. International Journal of Hydrogen Energy, 2008, 33, 4104-4111.	3.8	71
22	Parametric study of the decomposition of methane using a NiCu/Al2O3 catalyst in a fluidized bed reactor. International Journal of Hydrogen Energy, 2010, 35, 9801-9809.	3.8	69
23	Behaviour of different industrial waste oils in a pyrolysis process: metals distribution and valuable products. Journal of Analytical and Applied Pyrolysis, 2000, 55, 171-183.	2.6	65
24	Effects of reaction conditions on hydrogen production and carbon nanofiber properties generated by methane decomposition in a fixed bed reactor using a NiCuAl catalyst. Journal of Power Sources, 2009, 192, 35-42.	4.0	64
25	Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. Journal of Natural Gas Chemistry, 2012, 21, 367-373.	1.8	60
26	TiO2 as textural promoter on high loaded Ni catalysts for methane decomposition. International Journal of Hydrogen Energy, 2008, 33, 3320-3329.	3.8	58
27	Chromatographic separations enabling the structural characterisation of heavy petroleum residues. Fuel, 2003, 82, 1-14.	3.4	57
28	Synergetic effects in the co-pyrolysis of coal and petroleum residues: influences of coal mineral matter and petroleum residue mass ratio. Journal of Analytical and Applied Pyrolysis, 2000, 55, 29-41.	2.6	56
29	On the oxidation degree of few-layer graphene oxide sheets obtained from chemically oxidized multiwall carbon nanotubes. Carbon, 2015, 81, 405-417.	5.4	56
30	Non-isothermal versus isothermal technique to evaluate kinetic parameters of coal pyrolysis. Journal of Analytical and Applied Pyrolysis, 1998, 47, 111-125.	2.6	52
31	Influence of nickel crystal domain size on the behaviour of Ni and NiCu catalysts for the methane decomposition reaction. Applied Catalysis A: General, 2009, 363, 199-207.	2.2	52
32	The effect of carbon nanofiber properties as support for PtRu nanoparticles on the electrooxidation of alcohols. Applied Catalysis B: Environmental, 2013, 132-133, 13-21.	10.8	51
33	Activity of NiCuAl catalyst in methane decomposition studied using a thermobalance and the structural changes in the Ni and the deposited carbon. International Journal of Hydrogen Energy, 2008, 33, 2515-2524.	3.8	50
34	Screening of Ni-Cu bimetallic catalysts for hydrogen and carbon nanofilaments production via catalytic decomposition of methane. Applied Catalysis A: General, 2018, 559, 10-19.	2.2	50
35	Ni-Co bimetallic catalysts for the simultaneous production of carbon nanofibres and syngas through biogas decomposition. Applied Catalysis B: Environmental, 2017, 200, 255-264.	10.8	47
36	Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells. Applied Catalysis B: Environmental, 2013, 132-133, 22-27.	10.8	45

#	Article	IF	CITATIONS
37	Size Exclusion Chromatography of Soots and Coal-Derived Materials with 1-Methyl-2-pyrrolidinone as Eluent:  Observations on High Molecular Mass Material. Energy & Fuels, 2000, 14, 1009-1020.	2.5	44
38	Characterisation of tars from the co-pyrolysis of waste lubricating oils with coal. Fuel, 2001, 80, 179-194.	3.4	44
39	Pyrolysis-gas chromatography/mass spectrometry of fractions separated from a low-temperature coal tar: an attempt to develop a general method for characterising structures and compositions of heavy hydrocarbon liquids. Rapid Communications in Mass Spectrometry, 2002, 16, 774-784.	0.7	41
40	Co-pyrolysis of a mineral waste oil/coal slurry in a continuous-mode fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 2002, 65, 239-252.	2.6	40
41	The graphitization of carbon nanofibers produced by the catalytic decomposition of natural gas. Carbon, 2009, 47, 2563-2570.	5.4	39
42	Pyrolysis-gas chromatography/mass spectrometry of a coal extract and its fractions separated by planar chromatography: correlation of structural features with molecular mass. Rapid Communications in Mass Spectrometry, 2000, 14, 1766-1782.	0.7	38
43	Synergetic effects in the co-pyrolysis of samca coal and a model aliphatic compound studied by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 2002, 65, 197-206.	2.6	38
44	Ni–Mg and Ni–Cu–Mg catalysts for simultaneous production of hydrogen and carbon nanofibersThe effect of calcination temperature. International Journal of Hydrogen Energy, 2008, 33, 1719-1728.	3.8	38
45	Relationship between carbon morphology and catalyst deactivation in the catalytic decomposition of biogas using Ni, Co and Fe based catalysts. Fuel, 2015, 139, 71-78.	3.4	38
46	Co-, Cu- and Fe-Doped Ni/Al2O3 Catalysts for the Catalytic Decomposition of Methane into Hydrogen and Carbon Nanofibers. Catalysts, 2018, 8, 300.	1.6	38
47	Comparison of Fractionation Methods for the Structural Characterization of Petroleum Residues. Energy & Fuels, 2001, 15, 429-437.	2.5	37
48	Low cost catalytic sorbents for NOx reduction. 1. Preparation and characterization of coal char impregnated with model vanadium components and petroleum coke ash. Fuel, 2002, 81, 1281-1296.	3.4	36
49	Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation. Carbon, 2015, 81, 574-586.	5.4	36
50	Influence on hydrogen production of the minor components of natural gas during its decomposition using carbonaceous catalysts. Journal of Power Sources, 2009, 192, 100-106.	4.0	35
51	Matching average masses of pitch fractions of narrow polydispersity, derived from matrix-assisted laser desorption ionisation time-of-flight mass spectrometry, with the polystyrene calibration of SEC. Journal of Separation Science, 2003, 26, 1422-1428.	1.3	34
52	The unusual properties of high mass materials from coal-derived liquids⋆. Fuel, 2003, 82, 1813-1823.	3.4	34
53	Carbon nanofibers as electrocatalyst support for fuel cells: Effect of hydrogen on their properties in CH4 decomposition. Journal of Power Sources, 2009, 192, 51-56.	4.0	34
54	Metallic and carbonaceous –based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production. International Journal of Hydrogen Energy, 2012, 37, 9645-9655.	3.8	34

#	Article	IF	CITATIONS
55	Carbon nanofibres coated with Ni decorated MoS2 nanosheets as catalyst for vacuum residue hydroprocessing. Applied Catalysis B: Environmental, 2014, 148-149, 357-365.	10.8	34
56	Effect of carbon-based materials and CeO ₂ on Ni catalysts for Kraft lignin liquefaction in supercritical water. Green Chemistry, 2018, 20, 4308-4318.	4.6	34
57	A novel rotary reactor configuration for simultaneous production of hydrogen and carbon nanofibers. International Journal of Hydrogen Energy, 2009, 34, 8016-8022.	3.8	33
58	Catalytic decomposition of methane and methane/CO2 mixtures to produce synthesis gas and nanostructured carbonaceous material. Fuel, 2011, 90, 2245-2253.	3.4	33
59	The influence of carbon nanofiber support properties on the oxygen reduction behavior in proton conducting electrolyte-based direct methanol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 6253-6260.	3.8	33
60	Oxidized carbon nanofibers supporting PtRu nanoparticles for direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 5414-5423.	3.8	33
61	Valuable Products from Mineral Waste Oils Containing Heavy Metals. Environmental Science & Technology, 2000, 34, 3205-3210.	4.6	31
62	Towards a sustainable bio-fuels production from lignocellulosic bio-oils: Influence of operating conditions on the hydrodeoxygenation of guaiacol over a Mo2C/CNF catalyst. Fuel Processing Technology, 2019, 191, 111-120.	3.7	31
63	Sustainable production of liquid biofuels and value-added platform chemicals by hydrodeoxygenation of lignocellulosic bio-oil over a carbon–neutral Mo2C/CNF catalyst. Chemical Engineering Journal, 2021, 405, 126705.	6.6	31
64	Synergetic Effects in the Copyrolysis of Coal/Petroleum Residue Mixtures by Pyrolysis/Gas Chromatography:Â Influence of Temperature, Pressure, and Coal Nature. Energy & Fuels, 1998, 12, 963-968.	2.5	30
65	Bio-oil upgrading in supercritical water using Ni-Co catalysts supported on carbon nanofibres. Fuel Processing Technology, 2016, 154, 178-187.	3.7	30
66	Valorization of Lube Oil Waste by Pyrolysis. Energy & Fuels, 1997, 11, 1165-1170.	2.5	29
67	On the importance of the structure in the electrical conductivity of fishbone carbon nanofibers. Journal of Materials Science, 2013, 48, 1423-1435.	1.7	29
68	Trace-Element Partitioning between Fractions of Coal Liquids during Column Chromatography and Solvent Separation. Energy & Fuels, 2003, 17, 862-873.	2.5	28
69	Liquid-Phase Hydrodeoxygenation of Guaiacol over Mo2C Supported on Commercial CNF. Effects of Operating Conditions on Conversion and Product Selectivity. Catalysts, 2018, 8, 127.	1.6	28
70	Performance and stability of counter electrodes based on reduced few-layer graphene oxide sheets and reduced graphene oxide quantum dots for dye-sensitized solar cells. Electrochimica Acta, 2019, 306, 396-406.	2.6	27
71	Natural Fe-based catalysts for the production of hydrogen and carbon nanomaterials via methane decomposition. International Journal of Hydrogen Energy, 2021, 46, 35137-35148.	3.8	26
72	Pyrolysis of Baltic amber in a wire-mesh pyrolysis reactor: structural comparison of the tars with amber extracts in NMP. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 299-313.	2.6	25

#	Article	IF	CITATIONS
73	Study of the Surface Chemistry of Modified Carbon Nanofibers by Oxidation Treatments in Liquid Phase. Journal of Nanoscience and Nanotechnology, 2009, 9, 4164-4169.	0.9	25
74	Catalytic decomposition of biogas to produce H2-rich fuel gas and carbon nanofibers. Parametric study and characterization. International Journal of Hydrogen Energy, 2012, 37, 7067-7076.	3.8	25
75	Graphitized carbon nanofibers for use as anodes in lithium-ion batteries: Importance of textural and structural properties. Journal of Power Sources, 2012, 198, 303-307.	4.0	25
76	Cobalt doping of α-Fe/Al2O3 catalysts for the production of hydrogen and high-quality carbon nanotubes by thermal decomposition of methane. International Journal of Hydrogen Energy, 2020, 45, 19313-19323.	3.8	25
77	Effects of Air-Blowing on the Molecular Size and Structure of Coal-Tar Pitch Components. Energy & Fuels, 2002, 16, 1540-1549.	2.5	24
78	The graphitization of carbon nanofibers produced by catalytic decomposition of methane: Synergetic effect of the inherent Ni and Si. Fuel, 2010, 89, 2160-2162.	3.4	22
79	Catalytic decomposition of methane for the simultaneous co-production of CO2-free hydrogen and carbon nanofibre based polymers. Fuel, 2011, 90, 430-432.	3.4	22
80	Scanning different Ni-noble metal (Pt, Pd, Ru) bimetallic nanoparticles supported on carbon nanofibers for one-pot cellobiose conversion. Applied Catalysis A: General, 2019, 585, 117182.	2.2	22
81	Structural Features of Large Molecular Mass Material in Coal-Derived Liquids: Catalytic Hydrocracking of the Pyridine-Insoluble Fraction of a Coal-Tar Pitch. European Journal of Mass Spectrometry, 2000, 6, 39-48.	0.5	21
82	On the Chemical Composition of Thermally Treated Coal-Tar Pitches. Energy & Fuels, 2001, 15, 214-223.	2.5	21
83	A comparative study of the composition of anthracene oil polymerized by different treatments. Fuel, 2001, 80, 2155-2162.	3.4	21
84	Structural characterization of products from fuel-rich combustion: An approach based on size exclusion chromatography. Combustion Science and Technology, 2002, 174, 345-359.	1.2	20
85	Metal-ion pillared clays as hydrocracking catalysts (II): effect of contact time on products from coal extracts and petroleum distillation residuesã~†. Fuel, 2003, 82, 2309-2321.	3.4	20
86	Comparison of the Quaternary Aromatic Carbon Contents of a Coal, a Coal Extract, and Its Hydrocracking Products by NMR Methods. Energy & Fuels, 2003, 17, 1616-1629.	2.5	20
87	Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention. Applied Surface Science, 2017, 424, 101-110.	3.1	20
88	Structural characterisation of Baltic amber and its solvent extracts by several mass spectrometric methods. Rapid Communications in Mass Spectrometry, 2001, 15, 845-856.	0.7	19
89	Low cost catalytic sorbents for NOx reduction. 3. NO reduction tests using NH3 as reducing agent. Fuel, 2004, 83, 875-884.	3.4	19
90	Characterization of nanofibrous carbon produced at pilot-scale in a fluidized bed reactor by methane decomposition. Chemical Engineering Journal, 2010, 156, 170-176.	6.6	19

#	Article	IF	CITATIONS
91	H ₂ â^'CH ₄ Mixtures Produced by Carbon-Catalyzed Methane Decomposition as a Fuel for Internal Combustion Engines. Energy & Fuels, 2010, 24, 3340-3345.	2.5	19
92	Influence of the inherent metal species on the graphitization of methane-based carbon nanofibers. Carbon, 2012, 50, 5387-5394.	5.4	19
93	Effect of the synthesis conditions of Ni/Al2O3 catalysts on the biogas decomposition to produce H2-rich gas and carbon nanofibers. Applied Catalysis B: Environmental, 2015, 165, 457-465.	10.8	19
94	Influence of carburization time on the activity of Mo2C/CNF catalysts for the HDO of guaiacol. Catalysis Today, 2020, 357, 240-247.	2.2	19
95	Metal-ion pillared clays as hydrocracking catalysts (I): Catalyst preparation and assessment of performance at short contact times. Fuel, 2002, 81, 449-459.	3.4	18
96	Graphene quantum dots from fishbone carbon nanofibers. RSC Advances, 2016, 6, 48504-48514.	1.7	18
97	Effects of thermal treatment on the composition and properties of air-blown anthracene oils. Fuel, 2001, 80, 1229-1238.	3.4	17
98	Pyrolysis-gas chromatography/mass spectrometry of pitch fractions recovered from preparative size exclusion chromatography: structural differences with increasing molecular size. Rapid Communications in Mass Spectrometry, 2002, 16, 481-495.	0.7	17
99	Characterization of Chars Obtained from Co-pyrolysis of Coal and Petroleum Residues. Energy & Fuels, 2002, 16, 878-886.	2.5	16
100	Carbon Nanofiber Growth Optimization for Their Use as Electrocatalyst Support in Proton Exchange Membrane (PEM) Fuel Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 4353-4359.	0.9	16
101	Co-Pyrolysis of Coals and Lube Oil Wastes in a Bench-Scale Unit. Energy & Fuels, 1999, 13, 907-913.	2.5	15
102	Low cost catalytic sorbents for NOx reduction. 2. Tests with no reduction reactivesâ~†. Fuel, 2003, 82, 771-782.	3.4	15
103	Structure and composition of coal tars: An attempt to correlate molecular structure with increasing molecular mass. Combustion Science and Technology, 2003, 175, 775-791.	1.2	15
104	Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts. Catalysts, 2013, 3, 671-682.	1.6	15
105	Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol. Nanomaterials, 2017, 7, 447.	1.9	14
106	Graphene oxide nanofibers: A nanocarbon material with tuneable electrochemical properties. Applied Surface Science, 2020, 509, 144774.	3.1	14
107	Study of the polymerization of anthracene oil with AlCl3 by chromatography and related techniques. Journal of Chromatography A, 2001, 919, 255-266.	1.8	13
108	CH4 and CO2 partial pressures influence and deactivation study on the Catalytic Decomposition of Biogas over a Ni catalyst. Fuel, 2013, 111, 778-783.	3.4	13

#	Article	IF	CITATIONS
109	Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers. Nanomaterials, 2020, 10, 1056.	1.9	13
110	Catalytic hydrocracking of primary maceral concentrate extracts prepared in a flowing solvent reactor. Fuel, 2002, 81, 185-202.	3.4	12
111	Solvent degradation during coal liquefaction in a flowing-solvent reactor. Fuel, 2004, 83, 157-179.	3.4	12
112	Catalytic decomposition of biogas to produce hydrogen rich fuels for SI engines and valuable nanocarbons. International Journal of Hydrogen Energy, 2013, 38, 15084-15091.	3.8	12
113	On the hydrothermal-enhanced synthesis of highly selective Mo2C catalysts to fully deoxygenated products in the guaiacol HDO reaction. Journal of Environmental Chemical Engineering, 2021, 9, 105146.	3.3	12
114	Soot oxidation in the presence of NO over alumina-supported bimetallic catalysts K–Me (Me=Cu, Co,) Tj ETQq	0 0 0 rgB1 2.2	- /Overlock 10
115	Lignin to Monoaromatics with a Carbon-Nanofiber-Supported Ni–CeO _{2–<i>x</i>} Catalyst Synthesized in a One-Pot Hydrothermal Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 12800-12812.	3.2	11
116	Formation of hydrogen and filamentous carbon over a Ni–Cu–Al2O3 catalyst through ethane decomposition. Applied Catalysis A: General, 2011, 394, 220-227.	2.2	10
117	Acid treated carbon nanofibers as catalytic support for heavy oil hydroprocessing. Catalysis Today, 2015, 249, 79-85.	2.2	10
118	Analysis and optimisation of a novel â€~almond-refinery' concept: Simultaneous production of biofuels and value-added chemicals by hydrothermal treatment of almond hulls. Science of the Total Environment, 2021, 765, 142671.	3.9	10
119	Fractionation of Coal Extracts Prior to Hydrocracking:  An Attempt to Link Sample Structure to Conversion Levels and Catalyst Fouling. Energy & Fuels, 2001, 15, 1153-1165.	2.5	9
120	Custom-sized graphene oxide for the hydrolysis of cellulose. Carbon, 2021, 175, 429-439.	5.4	9
121	Caffeinating the biofuels market: Effect of the processing conditions during the production of biofuels and high-value chemicals by hydrothermal treatment of residual coffee pulp. Journal of Cleaner Production, 2021, 302, 127008.	4.6	9
122	Structural effects of sample ageing in hydrocracked coal liquefaction extracts. Fuel, 2000, 79, 1423-1429.	3.4	8
123	Structural Characterization of High-Softening-Point Pitches By Oxidation with RuO4. Energy & Fuels, 2001, 15, 128-134.	2.5	7
124	H 2 -rich gases production from Catalytic Decomposition of Biogas: Viability of the process associated to the co-production of carbon nanofibers. International Journal of Hydrogen Energy, 2017, 42, 23484-23493.	3.8	7
125	Nanostructured Carbon Material Effect on the Synthesis of Carbon-Supported Molybdenum Carbide Catalysts for Guaiacol Hydrodeoxygenation. Energies, 2020, 13, 1189.	1.6	7
126	Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane. Materials Chemistry and Physics, 2013, 137, 859-865.	2.0	6

#	Article	IF	CITATIONS
127	Synthesis and characterization of a supported Pd complex on carbon nanofibers for the selective decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion. Catalysis Science and Technology, 2020, 10, 2970-2985.	2.1	6
128	Tailored synthesis of organised mesoporous aluminas prepared by non-ionic surfactant templating using a Box-Wilson CCF design. Microporous and Mesoporous Materials, 2013, 179, 69-77.	2.2	5
129	Non-oxidative decomposition of propane: Ni-Cu/Al2O3 catalyst for the production of CO2-free hydrogen and high-value carbon nanofibers. Journal of Environmental Chemical Engineering, 2021, 9, 105022.	3.3	5
130	A multicriteria approach for evaluating high temperature hydrogen production processes. International Journal of Multicriteria Decision Making, 2011, 1, 177.	0.1	4
131	Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst. Science of the Total Environment, 2022, 825, 154044.	3.9	3
132	On-Site Production of Hydrogen from Mineral Waste Oils by Thermocatalytic Decomposition:Â An Aragon Case Study. Environmental Science & Technology, 2005, 39, 6871-6876.	4.6	2
133	Characterization of Carbon Nanofibers Grown Over Ni and Ni-Cu Catalysts. Journal of Nanoscience and Nanotechnology, 2009, 9, 4170-4179.	0.9	2
134	Response to the comments on "Metallic and carbonaceous-based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production―by A. Rollinson. International Journal of Hydrogen Energy, 2012, 37, 14716-14717.	3.8	2
135	Pyrolysisâ€gas chromatography/mass spectrometry of a coal extract and its fractions separated by planar chromatography: correlation of structural features with molecular mass. Rapid Communications in Mass Spectrometry, 2000, 14, 1766-1782.	0.7	1
136	Pyrolysis-gas chromatography/mass spectrometry of pitch fractions recovered from preparative size exclusion chromatography: structural differences with increasing molecular size. , 2002, 16, 481.		1

exclusion chromatography: structural differences with increasing molecular size. , 2002, 16, 481. 136