Gabriel Livera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1646577/publications.pdf

Version: 2024-02-01

57 3,301 29 54
papers citations h-index g-index

64 64 64 4570 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Pathogenic variants in the human m6A reader YTHDC2 are associated with primary ovarian insufficiency. JCI Insight, 2022, 7, .	2.3	8
2	Homozygous hypomorphic <i>BRCA2</i> variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait. Journal of Medical Genetics, 2021, 58, 125-134.	1.5	24
3	The meiosis-specific MEIOB–SPATA22 complex cooperates with RPA to form a compacted mixed MEIOB/SPATA22/RPA/ssDNA complex. DNA Repair, 2021, 102, 103097.	1.3	13
4	Mouse model of radiation-induced premature ovarian insufficiency reveals compromised oocyte quality: implications for fertility preservation. Reproductive BioMedicine Online, 2021, 43, 799-809.	1.1	6
5	Unexpected Interacting Effects of Physical (Radiation) and Chemical (Bisphenol A) Treatments on Male Reproductive Functions in Mice. International Journal of Molecular Sciences, 2021, 22, 11808.	1.8	2
6	shani mutation in mouse affects splicing of Spata22 and leads to impaired meiotic recombination. Chromosoma, 2020, 129, 161-179.	1.0	5
7	Maternal vitamin C regulates reprogramming of DNA methylation and germline development. Nature, 2019, 573, 271-275.	13.7	74
8	Divergent Roles of CYP26B1 and Endogenous Retinoic Acid in Mouse Fetal Gonads. Biomolecules, 2019, 9, 536.	1.8	12
9	A truncating MEIOB mutation responsible for familial primary ovarian insufficiency abolishes its interaction with its partner SPATA22 and their recruitment to DNA double-strand breaks. EBioMedicine, 2019, 42, 524-531.	2.7	50
10	Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends in Endocrinology and Metabolism, 2018, 29, 400-419.	3.1	118
11	Male Sex Determinationâ€"Phenotypic. , 2018, , 88-92.		O
12	Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis. PLoS ONE, 2018, 13, e0191934.	1.1	35
13	Human foetal ovary shares meiotic preventing factors with the developing testis. Human Reproduction, 2017, 32, 631-642.	0.4	18
14	A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency. ELife, 2017, 6, .	2.8	56
15	Meiotic onset is reliant on spatial distribution but independent of germ cell number in the mouse ovary. Journal of Cell Science, 2016, 129, 2493-9.	1.2	15
16	Loss of oocytes due to conditional ablation of <i>Murine double minute 2</i> (<i>Mdm2</i>) gene is p53â€dependent and results in female sterility. FEBS Letters, 2016, 590, 2566-2574.	1.3	14
17	RPA homologs and ssDNA processing during meiotic recombination. Chromosoma, 2016, 125, 265-276.	1.0	65
18	Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nature Communications, 2016, 7, 10324.	5.8	89

#	Article	IF	CITATIONS
19	Nuclear Receptors and Endocrine Disruptors in Fetal and Neonatal Testes: A Gapped Landscape. Frontiers in Endocrinology, 2015, 6, 58.	1.5	33
20	Expression of Dominant-Negative Thyroid Hormone Receptor Alpha1 in Leydig and Sertoli Cells Demonstrates No Additional Defect Compared with Expression in Sertoli Cells Only. PLoS ONE, 2015, 10, e0119392.	1.1	11
21	A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertility and Sterility, 2015, 103, 11-21.	0.5	537
22	Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic and Clinical Andrology, 2014, 24, 14.	0.8	29
23	Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors. Reproduction, 2014, 147, R119-R129.	1.1	72
24	Direct and indirect consequences on gene expression of a thyroid hormone receptor alpha 1 mutation restricted to Sertoli cells. Molecular Reproduction and Development, 2014, 81, 1159-1166.	1.0	6
25	Integrative rodent models for assessing male reproductive toxicity of environmental endocrine active substances. Asian Journal of Andrology, 2014, 16, 60.	0.8	10
26	The zinc-finger protein basonuclin 2 is required for proper mitotic arrest, prevention of premature meiotic initiation and meiotic progression in mouse male germ cells. Development (Cambridge), 2014, 141, 4298-4310.	1.2	19
27	Involvement of doublesex and mab-3-related transcription factors in human female germ cell development demonstrated by xenograft and interference RNA strategies. Molecular Human Reproduction, 2014, 20, 960-971.	1.3	16
28	Effects of endocrine disruptors on the human fetal testis. Annales D'Endocrinologie, 2014, 75, 54-57.	0.6	20
29	MEIOB Targets Single-Strand DNA and Is Necessary for Meiotic Recombination. PLoS Genetics, 2013, 9, e1003784.	1.5	93
30	Depletion of the p43 Mitochondrial T3 Receptor Increases Sertoli Cell Proliferation in Mice. PLoS ONE, 2013, 8, e74015.	1.1	13
31	Nodal Signaling Regulates the Entry into Meiosis in Fetal Germ Cells. Endocrinology, 2012, 153, 2466-2473.	1.4	76
32	Thyroid Hormone Limits Postnatal Sertoli Cell Proliferation In Vivo by Activation of Its Alpha1 Isoform Receptor (TRalpha1) Present in These Cells and by Regulation of Cdk4/JunD/c-myc mRNA Levels in Mice1. Biology of Reproduction, 2012, 87, 16, 1-9.	1.2	35
33	Dexamethasone Induces Germ Cell Apoptosis in the Human Fetal Ovary. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1890-E1897.	1.8	46
34	Differential Effects of Bisphenol A and Diethylstilbestrol on Human, Rat and Mouse Fetal Leydig Cell Function. PLoS ONE, 2012, 7, e51579.	1.1	84
35	Cellular and Molecular Effect of MEHP Involving LXRα in Human Fetal Testis and Ovary. PLoS ONE, 2012, 7, e48266.	1.1	41
36	Polluants environnementaux et troubles de la reproduction masculineÂ: les phtalates au cÅ"ur du débat. Cahiers De Nutrition Et De Dietetique, 2011, 46, 75-81.	0.2	1

#	Article	IF	Citations
37	TOPAZ1, a Novel Germ Cell-Specific Expressed Gene Conserved during Evolution across Vertebrates. PLoS ONE, 2011, 6, e26950.	1.1	15
38	In vitro effects of Uranium on human fetal germ cells. Reproductive Toxicology, 2011, 31, 470-476.	1.3	24
39	<i>Msx1</i> and <i>Msx2</i> promote meiosis initiation. Development (Cambridge), 2011, 138, 5393-5402.	1.2	62
40	Msx1 and Msx2 promote meiosis initiation. Journal of Cell Science, 2011, 124, e1-e1.	1.2	0
41	The Src Homology 2 Domain-Containing Adapter Protein B (SHB) Regulates Mouse Oocyte Maturation. PLoS ONE, 2010, 5, e11155.	1.1	17
42	Cadmium Increases Human Fetal Germ Cell Apoptosis. Environmental Health Perspectives, 2010, 118, 331-337.	2.8	78
43	New testicular mechanisms involved in the prevention of fetal meiotic initiation in mice. Developmental Biology, 2010, 346, 320-330.	0.9	48
44	p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction, 2008, 135, 3-12.	1.1	150
45	Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle, 2008, 7, 656-664.	1.3	96
46	Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation. Human Reproduction, 2008, 24, 670-678.	0.4	31
47	The role of p63 in germ cell apoptosis in the developing testis. Journal of Cellular Physiology, 2007, 210, 87-98.	2.0	60
48	Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell and Tissue Research, 2006, 324, 507-521.	1.5	90
49	AKAP3 Selectively Binds PDE4A Isoforms in Bovine Spermatozoa1. Biology of Reproduction, 2006, 74, 109-118.	1.2	60
50	Phosphodiesterase 4D Forms a cAMP Diffusion Barrier at the Apical Membrane of the Airway Epithelium. Journal of Biological Chemistry, 2005, 280, 7997-8003.	1.6	99
51	Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Developmental Biology, 2003, 258, 385-396.	0.9	139
52	Cyclic AMP-specific PDE4 Phosphodiesterases as Critical Components of Cyclic AMP Signaling. Journal of Biological Chemistry, 2003, 278, 5493-5496.	1.6	429
53	Time- and Dose-Related Effects of Estradiol and Diethylstilbestrol on the Morphology and Function of the Fetal Rat Testis in Culture. Toxicological Sciences, 2003, 73, 160-169.	1.4	73
54	Régulations et perturbations des fonctions testiculaires par la vitamine A. Medecine/Sciences, 2002, 18, 955-963.	0.0	0

#	Article	IF	CITATIONS
55	Luteinizing hormone-dependent activity and luteinizing hormone-independent differentiation of rat fetal Leydig cells. Molecular and Cellular Endocrinology, 2001, 172, 193-202.	1.6	73
56	Inhibition of DMRTA2 impairs human female germline development in xeno-grafted ovaries. Reproduction Abstracts, 0 , , .	0.0	0
57	Dissecting the meiotic gene network in female embryonic germ cells. Reproduction Abstracts, 0, , .	0.0	0