Hidehiko Nakagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1646090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key bioactive reaction products of the NO/H ₂ S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4651-60.	7.1	243
2	A Reductant-Resistant and Metal-Free Fluorescent Probe for Nitroxyl Applicable to Living Cells. Journal of the American Chemical Society, 2013, 135, 12690-12696.	13.7	108
3	Photoinduced Nitric Oxide Release from Nitrobenzene Derivatives. Journal of the American Chemical Society, 2005, 127, 11720-11726.	13.7	102
4	Photomanipulation of Vasodilation with a Blue-Light-Controllable Nitric Oxide Releaser. Journal of the American Chemical Society, 2014, 136, 7085-7091.	13.7	97
5	Photoinduced Nitric Oxide Release from a Hindered Nitrobenzene Derivative by Two-Photon Excitation. Journal of the American Chemical Society, 2009, 131, 7488-7489.	13.7	86
6	Synthesis of a photocontrollable hydrogen sulfide donor using ketoprofenate photocages. Chemical Communications, 2014, 50, 587-589.	4.1	79
7	Photocontrollable Peroxynitrite Generator Based on <i>N</i> -Methyl- <i>N</i> -nitrosoaminophenol for Cellular Application. Journal of the American Chemical Society, 2012, 134, 2563-2568.	13.7	49
8	Photoactivatable HNO-releasing compounds using the retro-Diels–Alder reaction. Chemical Communications, 2008, , 5149.	4.1	45
9	Multiplexed single-molecule enzyme activity analysis for counting disease-related proteins in biological samples. Science Advances, 2020, 6, eaay0888.	10.3	44
10	Piloty's acid derivative with improved nitroxyl-releasing characteristics. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2340-2343.	2.2	42
11	A yellowish-green-light-controllable nitric oxide donor based on N-nitrosoaminophenol applicable for photocontrolled vasodilation. Organic and Biomolecular Chemistry, 2017, 15, 2791-2796.	2.8	37
12	Visible Light-Controlled Nitric Oxide Release from Hindered Nitrobenzene Derivatives for Specific Modulation of Mitochondrial Dynamics. ACS Chemical Biology, 2016, 11, 1271-1278.	3.4	33
13	Nitration of Specific Tyrosine Residues of Cytochrome c Is Associated with Caspase-Cascade Inactivation. Biological and Pharmaceutical Bulletin, 2007, 30, 15-20.	1.4	32
14	Controlled release of HNO from chemical donors for biological applications. Journal of Inorganic Biochemistry, 2013, 118, 187-190.	3.5	32
15	Development of photo-controllable hydrogen sulfide donor applicable in live cells. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 175-178.	2.2	32
16	PlexinD1 signaling controls morphological changes and migration termination in newborn neurons. EMBO Journal, 2018, 37, .	7.8	32
17	Alternative photoinduced release of HNO or NO from an acyl nitroso compound, depending on environmental polarity. Chemical Communications, 2010, 46, 3788.	4.1	30
18	Fine Spatiotemporal Control of Nitric Oxide Release by Infrared Pulse-Laser Irradiation of a Photolabile Donor. ACS Chemical Biology, 2013, 8, 2493-2500.	3.4	28

HIDEHIKO NAKAGAWA

#	Article	IF	CITATIONS
19	Development of a Red-Light-Controllable Nitric Oxide Releaser to Control Smooth Muscle Relaxation <i>in Vivo</i> . ACS Chemical Biology, 2020, 15, 2958-2965.	3.4	28
20	Photoinduced Nitric Oxide Release from a Nitrobenzene Derivative in Mitochondria. Chemistry - A European Journal, 2011, 17, 4809-4813.	3.3	26
21	Visible light-induced nitric oxide release from a novel nitrobenzene derivative cross-conjugated with a coumarin fluorophore. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5660-5662.	2.2	25
22	Photocontrollable nitric oxide (NO) and nitroxyl (HNO) donors and their release mechanisms. Nitric Oxide - Biology and Chemistry, 2011, 25, 195-200.	2.7	23
23	A Fluorescent Probe for Imaging Sirtuin Activity in Living Cells, Based on Oneâ€ S tep Cleavage of the Dabcyl Quencher. ChemBioChem, 2016, 17, 1961-1967.	2.6	23
24	A novel mitochondria-localizing nitrobenzene derivative as a donor for photo-uncaging of nitric oxide. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2000-2002.	2.2	22
25	Development of an ENPP1 Fluorescence Probe for Inhibitor Screening, Cellular Imaging, and Prognostic Assessment of Malignant Breast Cancer. Journal of Medicinal Chemistry, 2019, 62, 9254-9269.	6.4	22
26	Structure-efficiency relationship of photoinduced electron transfer-triggered nitric oxide releasers. Scientific Reports, 2019, 9, 1430.	3.3	22
27	Novel mitochondria-localizing TEMPO derivative for measurement of cellular oxidative stress in mitochondria. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2055-2058.	2.2	21
28	Peroxynitrite generation from a NO-releasing nitrobenzene derivative in response to photoirradiation. Chemical Communications, 2011, 47, 6449.	4.1	21
29	(7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity. Bioorganic and Medicinal Chemistry, 2016, 24, 2789-2793.	3.0	19
30	Development of a DNA-binding TEMPO derivative for evaluation of nuclear oxidative stress and its application in living cells. Free Radical Biology and Medicine, 2010, 49, 1792-1797.	2.9	18
31	Development of Peptide-Based Sirtuin Defatty-Acylase Inhibitors Identified by the Fluorescence Probe, SFP3, That Can Efficiently Measure Defatty-Acylase Activity of Sirtuin. Journal of Medicinal Chemistry, 2019, 62, 5434-5452.	6.4	18
32	Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets. PLoS ONE, 2017, 12, e0176162.	2.5	17
33	Development and cellular application of visible-light-controllable HNO releasers based on caged Piloty's acid. Chemical Communications, 2018, 54, 10371-10374.	4.1	16
34	Photoâ€Controlled Release of Small Signaling Molecules to Induce Biological Responses. Chemical Record, 2018, 18, 1708-1716.	5.8	13
35	Cationic axial ligands on sulfur substituted silicon(<scp>iv</scp>) phthalocyanines: improved hydrophilicity and exceptionally red-shifted absorption into the NIR region. Chemical Communications, 2019, 55, 7311-7314.	4.1	13
36	Multiple bond-conjugated photoinduced nitric oxide releaser working with two-photon excitation. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 302-305.	2.2	12

HIDEHIKO NAKAGAWA

#	Article	IF	CITATIONS
37	Induction of superoxide in glioma cell line U87 stimulated with lipopolysaccharide and interferon-γ: ESR using a new flow-type quartz cell. FEBS Letters, 2000, 471, 187-190.	2.8	11
38	Novel membrane-localizing TEMPO derivatives for measurement of cellular oxidative stress at the cell membrane. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1451-1454.	2.2	11
39	Novel bisbenzimide-nitroxides for nuclear redox imaging in living cells. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1949-1952.	2.2	11
40	A double bond-conjugated dimethylnitrobenzene-type photolabile nitric oxide donor with improved two-photon cross section. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3172-3175.	2.2	11
41	A visible light-controllable Rho kinase inhibitor based on a photochromic phenylazothiazole. Chemical Communications, 2021, 57, 12500-12503.	4.1	11
42	Peptidyl prolyl isomerase Pin1-inhibitory activity of d -glutamic and d -aspartic acid derivatives bearing a cyclic aliphatic amine moiety. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5619-5624.	2.2	10
43	<i>In Cellullo</i> and <i>ex Vivo</i> Availability of a Yellowish-Green-Light-Controllable NO Releaser. Chemical and Pharmaceutical Bulletin, 2019, 67, 576-579.	1.3	10
44	An irreversible inhibitor of peptidyl-prolyl cis/trans isomerase Pin1 and evaluation of cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 353-356.	2.2	10
45	Photoinduced Upregulation of Calcitonin Gene-Related Peptide in A549 Cells through HNO Release from a Hydrophilic Photocontrollable HNO Donor. Chemical and Pharmaceutical Bulletin, 2012, 60, 1055-1062.	1.3	9
46	Development of a fluorescent probe for detection of citrulline based on photo-induced electron transfer. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 969-973.	2.2	9
47	Light-controlled relaxation of the rat penile corpus cavernosum using NOBL-1, a novel nitric oxide releaser. Investigative and Clinical Urology, 2016, 57, 215.	2.0	8
48	Substrate selectivity and its mechanistic insight of the photo-responsive non-nucleoside triphosphate for myosin and kinesin. Organic and Biomolecular Chemistry, 2019, 17, 53-65.	2.8	8
49	Photocontrollable NO-releasing compounds and their biological applications. Journal of Clinical Biochemistry and Nutrition, 2016, 58, 2-6.	1.4	7
50	Photocontrol of NO, H ₂ S, and HNO Release in Biological Systems by Using Specific Caged Compounds. Chemical and Pharmaceutical Bulletin, 2016, 64, 1249-1255.	1.3	7
51	A Set of Highly Sensitive Sirtuin Fluorescence Probes for Screening Small-Molecular Sirtuin Defatty-Acylase Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 617-624.	2.8	7
52	Identification of PotentIn VivoAutotaxin Inhibitors that Bind to Both Hydrophobic Pockets and Channels in the Catalytic Domain. Journal of Medicinal Chemistry, 2020, 63, 3188-3204.	6.4	6
53	Development of a highly sensitive fluorescence probe for peptidyl arginine deiminase (PAD) activity. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 923-928.	2.2	4
54	Control of rat bladder neck relaxation with NORD-1, a red light–reactive nitric oxide releaser: InÂvitro study. Journal of Pharmacological Sciences, 2021, 146, 226-232.	2.5	4

#	Article	IF	CITATIONS
55	Synthesis of Fluorescent Probes Targeting Tumor-Suppressor Protein FHIT and Identification of Apoptosis-Inducing FHIT Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 9567-9576.	6.4	3
56	Ascorbate-assisted nitric oxide release from photocontrollable nitrosonium ion releasers for potent <i>ex vivo</i> photovasodilation. Chemical Communications, 2022, 58, 8420-8423.	4.1	3
57	Ratiometric assay of CARM1 activity using a FRET-based fluorescent probe. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126728.	2.2	2
58	2,2,6,6-Tetramethylpiperidin-1-Oxyl Probes for Evaluating Oxidative Stress on the Cell Membrane and Mitochondria. Methods in Molecular Biology, 2008, 477, 99-112.	0.9	1
59	Synthesis, evaluation, and biological applications of visible-light-controllable nitric oxide releasers. Methods in Enzymology, 2020, 640, 37-61.	1.0	1
60	3P-016 Fibril formation of mouse priori mutants(Protein:Structure,The 47th Annual Meeting of the) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5

61	Live-Cell Imaging of Sirtuin Activity Using a One-Step Fluorescence Probe. Methods in Molecular Biology, 2021, 2274, 155-168.	0.9	0
62	Development of Photoredox-reaction-driven NO-releasing Reagents and Application for Photomanipulation of Vasodilation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1048-1057.	0.1	0