Liangyou Rui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1645277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of the HIF2α-NCOA4 axis in enterocytes attenuates iron loading in a mouse model of hemochromatosis. Blood, 2022, 139, 2547-2552.	1.4	20
2	Neuronal SH2B1 attenuates apoptosis in an MPTP mouse model of Parkinson's disease via promoting PLIN4 degradation. Redox Biology, 2022, 52, 102308.	9.0	4
3	Reprogramming of Hepatic Metabolism and Microenvironment in Nonalcoholic Steatohepatitis. Annual Review of Nutrition, 2022, 42, 91-113.	10.1	20
4	Neuronal Src homology 2 B adaptor protein 1 and brain growth. , 2021, , 157-166.		0
5	Dysregulation of intercellular signaling by MOF deletion leads to liver injury. Journal of Biological Chemistry, 2021, 296, 100235.	3.4	4
6	Leptin Induces Epigenetic Regulation of Transient Receptor Potential Melastatin 7 in Rat Adrenal Pheochromocytoma Cells. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 214-221.	2.9	13
7	Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. Nature Communications, 2021, 12, 2621.	12.8	15
8	Hepatic NFâ€₽Bâ€Inducing Kinase and Inhibitor of NFâ€₽B Kinase Subunit α Promote Liver Oxidative Stress, Ferroptosis, and Liver Injury. Hepatology Communications, 2021, 5, 1704-1720.	4.3	19
9	Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. Journal of Clinical Investigation, 2020, 130, 2992-3004.	8.2	29
10	A critical role for hepatic protein arginine methyltransferase 1 isoform 2 in glycemic control. FASEB Journal, 2020, 34, 14863-14877.	0.5	5
11	Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease. Nature Communications, 2020, 11, 1517.	12.8	43
12	Medullary thymic epithelial NF–kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19090-19097.	7.1	25
13	<i>Clinopodium chinense</i> Attenuates Palmitic Acid-Induced Vascular Endothelial Inflammation and Insulin Resistance through TLR4-Mediated NF-κB and MAPK Pathways. The American Journal of Chinese Medicine, 2019, 47, 97-117.	3.8	23
14	Intestinal non-canonical NFκB signaling shapes the local and systemic immune response. Nature Communications, 2019, 10, 660.	12.8	69
15	New Antidiabetes Agent Targeting Both Mitochondrial Uncoupling and Pyruvate Catabolism: Two Birds With One Stone. Diabetes, 2019, 68, 2195-2196.	0.6	1
16	The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nature Metabolism, 2019, 1, 251-260.	11.9	53
17	Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. Journal of Clinical Investigation, 2019, 129, 2305-2317.	8.2	39
18	Dual role for inositolâ€requiring enzyme 1α in promoting the development of hepatocellular carcinoma during dietâ€induced obesity in mice. Hepatology, 2018, 68, 533-546.	7.3	47

LIANGYOU RUI

#	Article	IF	CITATIONS
19	The Effect of SH2B1 Variants on Expression of Leptin- and Insulin-Induced Pathways in Murine Hypothalamus. Obesity Facts, 2018, 11, 93-108.	3.4	12
20	Neural deletion of <i>Sh2b1</i> results in brain growth retardation and reactive aggression. FASEB Journal, 2018, 32, 1830-1840.	0.5	19
21	Islet α-cell Inflammation Induced By NF-κB inducing kinase (NIK) Leads to Hypoglycemia, Pancreatitis, Growth Retardation, and Postnatal Death in Mice. Theranostics, 2018, 8, 5960-5971.	10.0	24
22	Insulin/Snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis. Nature Communications, 2018, 9, 2751.	12.8	34
23	Hepatic NF-kB-inducing kinase (NIK) suppresses mouse liver regeneration in acute and chronic liver diseases. ELife, 2018, 7, .	6.0	28
24	Thymic NF-κB-inducing kinase regulates CD4+ T cell-elicited liver injury and fibrosis in mice. Journal of Hepatology, 2017, 67, 100-109.	3.7	39
25	The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nature Immunology, 2017, 18, 519-529.	14.5	279
26	Liver NF-κB-Inducing Kinase Promotes Liver Steatosis and Glucose Counterregulation in Male Mice With Obesity. Endocrinology, 2017, 158, 1207-1216.	2.8	34
27	Brown and Beige Adipose Tissues in Health and Disease. , 2017, 7, 1281-1306.		127
28	A smallâ€molecule inhibitor of NFâ€̂PBâ€inducing kinase (NIK) protects liver from toxinâ€induced inflammation, oxidative stress, and injury. FASEB Journal, 2017, 31, 711-718.	0.5	63
29	Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity. Journal of Clinical Investigation, 2017, 127, 2855-2867.	8.2	79
30	4E-BP2/SH2B1/IRS2 Are Part of a Novel Feedback Loop That Controls Î ² -Cell Mass. Diabetes, 2016, 65, 2235-2248.	0.6	13
31	Adipose Snail1 Regulates Lipolysis and Lipid Partitioning by Suppressing Adipose Triacylglycerol Lipase Expression. Cell Reports, 2016, 17, 2015-2027.	6.4	31
32	E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis. Journal of Lipid Research, 2016, 57, 1219-1230.	4.2	21
33	HIF2 α Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling. Cell Metabolism, 2016, 23, 505-516.	16.2	42
34	Carboxyl Terminus of HSC70-interacting Protein (CHIP) Down-regulates NF-κB-inducing Kinase (NIK) and Suppresses NIK-induced Liver Injury. Journal of Biological Chemistry, 2015, 290, 11704-11714.	3.4	35
35	Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity. Molecular Metabolism, 2015, 4, 951-960.	6.5	30
36	Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E460-E469.	3.5	30

Liangyou Rui

#	Article	IF	CITATIONS
37	Role for the endoplasmic reticulum stress sensor IRE1α in liver regenerative responses. Journal of Hepatology, 2015, 62, 590-598.	3.7	67
38	Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons. PLoS ONE, 2014, 9, e105080.	2.5	18
39	SH2B1 regulation of energy balance, body weight, and glucose metabolism. World Journal of Diabetes, 2014, 5, 511.	3.5	60
40	Liver Clock Protein BMAL1 Promotes de Novo Lipogenesis through Insulin-mTORC2-AKT Signaling. Journal of Biological Chemistry, 2014, 289, 25925-25935.	3.4	94
41	SH2B1 in β-Cells Promotes Insulin Expression and Glucose Metabolism in Mice. Molecular Endocrinology, 2014, 28, 696-705.	3.7	13
42	Functional Characterization of Obesity-Associated Variants Involving the α and β Isoforms of Human SH2B1. Endocrinology, 2014, 155, 3219-3226.	2.8	39
43	Mouse hepatocyte overexpression of NFâ€̂PBâ€inducing kinase (NIK) triggers fatal macrophageâ€dependent liver injury and fibrosis. Hepatology, 2014, 60, 2065-2076.	7.3	80
44	SH2B1 in β-Cells Regulates Glucose Metabolism by Promoting β-Cell Survival and Islet Expansion. Diabetes, 2014, 63, 585-595.	0.6	31
45	Energy Metabolism in the Liver. , 2014, 4, 177-197.		1,413
46	Brain regulation of energy balance and body weight. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 387-407.	5.7	128
47	Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. Journal of Cell Biology, 2013, 200, 241-247.	5.2	34
48	Leptin signaling and leptin resistance. Frontiers of Medicine, 2013, 7, 207-222.	3.4	302
49	Lipocalin 13 Regulation of Glucose and Lipid Metabolism in Obesity. Vitamins and Hormones, 2013, 91, 369-383.	1.7	16
50	Intracellular lipid content is a key intrinsic determinant for hepatocyte viability and metabolic and inflammatory states in mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1115-E1123.	3.5	16
51	Hepatic SH2B1 and SH2B2 Regulate Liver Lipid Metabolism and VLDL Secretion in Mice. PLoS ONE, 2013, 8, e83269.	2.5	22
52	Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2012, 32, 3610-3623.	2.3	14
53	Shp2 Controls Female Body Weight and Energy Balance by Integrating Leptin and Estrogen Signals. Molecular and Cellular Biology, 2012, 32, 1867-1878.	2.3	57
54	Hepatic TRAF2 Regulates Glucose Metabolism Through Enhancing Glucagon Responses. Diabetes, 2012, 61, 566-573.	0.6	50

Liangyou Rui

#	Article	IF	CITATIONS
55	NF-κB–inducing kinase (NIK) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action. Nature Medicine, 2012, 18, 943-949.	30.7	88
56	Human SH2B1 mutations are associated with maladaptive behaviors and obesity. Journal of Clinical Investigation, 2012, 122, 4732-4736.	8.2	147
57	Glucose Enhances Leptin Signaling through Modulation of AMPK Activity. PLoS ONE, 2012, 7, e31636.	2.5	36
58	Lipocalin-13 Regulates Glucose Metabolism by both Insulin-Dependent and Insulin-Independent Mechanisms. Molecular and Cellular Biology, 2011, 31, 450-457.	2.3	37
59	Lipocalin 13 Protein Protects against Hepatic Steatosis by Both Inhibiting Lipogenesis and Stimulating Fatty Acid β-Oxidation. Journal of Biological Chemistry, 2011, 286, 38128-38135.	3.4	34
60	PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15852-15857.	7.1	76
61	Transcriptional Repressor E4-binding Protein 4 (E4BP4) Regulates Metabolic Hormone Fibroblast Growth Factor 21 (FGF21) during Circadian Cycles and Feeding. Journal of Biological Chemistry, 2010, 285, 36401-36409.	3.4	88
62	Critical Role of the Src Homology 2 (SH2) Domain of Neuronal SH2B1 in the Regulation of Body Weight and Glucose Homeostasis in Mice. Endocrinology, 2010, 151, 3643-3651.	2.8	38
63	Major Urinary Protein Regulation of Chemical Communication and Nutrient Metabolism. Vitamins and Hormones, 2010, 83, 151-163.	1.7	70
64	SH2B Regulation of Growth, Metabolism, and Longevity in Both Insects and Mammals. Cell Metabolism, 2010, 11, 427-437.	16.2	88
65	Identification of MUP1 as a Regulator for Glucose and Lipid Metabolism in Mice. Journal of Biological Chemistry, 2009, 284, 11152-11159.	3.4	147
66	SH2B1 Enhances Insulin Sensitivity by Both Stimulating the Insulin Receptor and Inhibiting Tyrosine Dephosphorylation of Insulin Receptor Substrate Proteins. Diabetes, 2009, 58, 2039-2047.	0.6	77
67	Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology, 2009, 49, 1166-1175.	7.3	172
68	Recent advances in understanding leptin signaling and leptin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1247-E1259.	3.5	381
69	Leptin Stimulates Both JAK2-dependent and JAK2-independent Signaling Pathways. Journal of Biological Chemistry, 2008, 283, 28066-28073.	3.4	74
70	Adapter Protein SH2-BÎ ² Stimulates Actin-Based Motility of Listeria monocytogenes in a Vasodilator-Stimulated Phosphoprotein (VASP)-Dependent Fashion. Infection and Immunity, 2007, 75, 3581-3593.	2.2	10
71	SH2B1 Enhances Leptin Signaling by Both Janus Kinase 2 Tyr813 Phosphorylation-Dependent and -Independent Mechanisms. Molecular Endocrinology, 2007, 21, 2270-2281.	3.7	89
72	Identification of SH2B2β as an Inhibitor for SH2B1- and SH2B2α-Promoted Janus Kinase-2 Activation and Insulin Signaling. Endocrinology, 2007, 148, 1615-1621.	2.8	37

LIANGYOU RUI

#	Article	IF	CITATIONS
73	Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. Journal of Clinical Investigation, 2007, 117, 397-406.	8.2	170
74	A link between protein translation and body weight. Journal of Clinical Investigation, 2007, 117, 310-313.	8.2	23
75	Differential Role of SH2-B and APS in Regulating Energy and Glucose Homeostasis. Endocrinology, 2006, 147, 2163-2170.	2.8	45
76	Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice. Cell Metabolism, 2005, 2, 95-104.	16.2	202
77	SH2-B Promotes Insulin Receptor Substrate 1 (IRS1)- and IRS2-mediated Activation of the Phosphatidylinositol 3-Kinase Pathway in Response to Leptin. Journal of Biological Chemistry, 2004, 279, 43684-43691.	3.4	145
78	Disruption of the SH2 - B Gene Causes Age-Dependent Insulin Resistance and Glucose Intolerance. Molecular and Cellular Biology, 2004, 24, 7435-7443.	2.3	117
79	SOCS-1 and SOCS-3 Block Insulin Signaling by Ubiquitin-mediated Degradation of IRS1 and IRS2. Journal of Biological Chemistry, 2002, 277, 42394-42398.	3.4	744
80	Regulation of Insulin/Insulin-like Growth Factor-1 Signaling by Proteasome-mediated Degradation of Insulin Receptor Substrate-2. Journal of Biological Chemistry, 2001, 276, 40362-40367.	3.4	191
81	Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. Journal of Clinical Investigation, 2001, 107, 181-189.	8.2	508
82	Platelet-derived Growth Factor and Lysophosphatidic Acid Inhibit Growth Hormone Binding and Signaling via a Protein Kinase C-dependent Pathway. Journal of Biological Chemistry, 2000, 275, 2885-2892.	3.4	21
83	SH2-B Is Required for Growth Hormone-induced Actin Reorganization. Journal of Biological Chemistry, 2000, 275, 13126-13133.	3.4	52
84	Differential Binding to and Regulation of JAK2 by the SH2 Domain and N-Terminal Region of SH2-Bβ. Molecular and Cellular Biology, 2000, 20, 3168-3177.	2.3	60
85	SH2-B Is Required for Nerve Growth Factor-induced Neuronal Differentiation. Journal of Biological Chemistry, 1999, 274, 10590-10594.	3.4	79
86	SH2-B, a Membrane-associated Adapter, Is Phosphorylated on Multiple Serines/Threonines in Response to Nerve Growth Factor by Kinases within the MEK/ERK Cascade. Journal of Biological Chemistry, 1999, 274, 26485-26492.	3.4	41
87	A Functional DNA Binding Domain Is Required for Growth Hormone-induced Nuclear Accumulation of Stat5B. Journal of Biological Chemistry, 1999, 274, 5138-5145.	3.4	76
88	Platelet-derived Growth Factor (PDGF) Stimulates the Association of SH2-BÎ ² with PDGF Receptor and Phosphorylation of SH2-BÎ ² . Journal of Biological Chemistry, 1998, 273, 21239-21245.	3.4	59