
Chengjun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1645056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Science of the Total Environment, 2021, 765, 142794.	8.0	259
2	Ultrasound-assisted hydrolysis and gas chromatography–mass spectrometric determination of phenolic compounds in cranberry products. Food Chemistry, 2011, 128, 562-568.	8.2	113
3	Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: Certainties and uncertainties. Chemical Engineering Journal, 2022, 427, 131776.	12.7	113
4	Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography. Talanta, 2006, 70, 281-285.	5.5	107
5	Advances on transition metal oxides catalysts for formaldehyde oxidation: A review. Catalysis Reviews - Science and Engineering, 2017, 59, 189-233.	12.9	93
6	Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography. Analytical Sciences, 2008, 24, 1589-1592.	1.6	87
7	A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Science of the Total Environment, 2021, 789, 147741.	8.0	83
8	Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China. Chemosphere, 2017, 179, 316-330.	8.2	71
9	Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water. Journal of Chromatography A, 2017, 1511, 85-91.	3.7	69
10	Simultaneous determination of anthraquinones in radix Polygoni multiflori by capillary gas chromatography coupled with flame ionization and mass spectrometric detection. Journal of Chromatography A, 2008, 1200, 43-48.	3.7	53
11	Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. Journal of Dairy Science, 2014, 97, 679-686.	3.4	44
12	Aerosol composition and sources during high and low pollution periods in Ningbo, China. Atmospheric Research, 2016, 178-179, 559-569.	4.1	43
13	Determination of free and total phthalates in commercial whole milk products in different packaging materials by gas chromatography-mass spectrometry. Journal of Dairy Science, 2015, 98, 8278-8284.	3.4	41
14	Dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry determination of polychlorinated biphenyls and polybrominated diphenyl ethers in milk. Journal of Separation Science, 2011, 34, 1084-1090.	2.5	39
15	Analysis of phenolic pollutants in human samples by high performance capillary electrophoresis based on pretreatment of ultrasound-assisted emulsification microextraction and solidification of floating organic droplet. Journal of Chromatography A, 2012, 1253, 16-21.	3.7	39
16	Absorption and excretion of cranberry-derived phenolics in humans. Food Chemistry, 2012, 132, 1420-1428.	8.2	39
17	Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28, 62030-62060.	5.3	38
18	Mechanistic Investigation of Enhanced Photoreactivity of Dissolved Organic Matter after Chlorination. Environmental Science & Technology, 2021, 55, 8937-8946.	10.0	34

CHENGJUN WANG

#	Article	IF	CITATIONS
19	A novel surface activation method for Ni/Au electroless plating of acrylonitrile–butadiene–styrene. Surface and Coatings Technology, 2011, 206, 1382-1388.	4.8	33
20	Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere, 2021, 272, 129632.	8.2	32
21	Multiresidue analysis of 30 organochlorine pesticides in milk and milk powder by gel permeation chromatography-solid phase extraction-gas chromatography-tandem mass spectrometry. Journal of Dairy Science, 2014, 97, 6016-6026.	3.4	31
22	Ionic liquids dispersive liquid–liquid microextraction and <scp>HPLC</scp> â€atomic fluorescence spectrometric determination of mercury species in environmental waters. Journal of Separation Science, 2013, 36, 414-420.	2.5	29
23	Molecularly Imprinted Polymers with Dual Template and Bifunctional Monomers for Selective and Simultaneous Solid-Phase Extraction and Gas Chromatographic Determination of Four Plant Growth Regulators in Plant-Derived Tissues and Foods. Food Analytical Methods, 2019, 12, 1160-1169.	2.6	28
24	Halloysite-nanotubes supported FeNi alloy nanoparticles for catalytic decomposition of toxic phosphine gas into yellow phosphorus and hydrogen. Chemosphere, 2013, 91, 1368-1373.	8.2	27
25	lonic liquids dispersive liquid–liquid microextraction and highâ€performance liquid chromatographic determination of irbesartan and valsartan in human urine. Biomedical Chromatography, 2013, 27, 254-258.	1.7	25
26	Study of the effect of ceria on the activity and selectivity of Co and Ce co-doped birnessite manganese oxide for formaldehyde oxidation. Journal of Hazardous Materials, 2022, 424, 127583.	12.4	25
27	Biomass burning and fungal spores as sources of fine aerosols in Yangtze River Delta, China – Using multiple organic tracers to understand variability, correlations and origins. Environmental Pollution, 2019, 251, 155-165.	7.5	24
28	Graphene oxide based molecularly imprinted polymers modified with <i>β</i> yclodextrin for selective extraction of di(2â€ethylhexyl) phthalate in environmental waters. Journal of Separation Science, 2019, 42, 1248-1256.	2.5	24
29	Modification to degradation of hexazinone in forest soils amended with sewage sludge. Journal of Hazardous Materials, 2012, 199-200, 96-104.	12.4	22
30	Determination of Four Flavorings in Infant Formula by Solid-Phase Extraction and Gas Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 10881-10888.	5.2	22
31	Exfoliation of two-dimensional phosphorene sheets with enhanced photocatalytic activity under simulated sunlight. Materials Letters, 2018, 212, 311-314.	2.6	22
32	Opposite Effects of Co and Cu Dopants on the Catalytic Activities of Birnessite MnO ₂ Catalyst for Low-Temperature Formaldehyde Oxidation. Journal of Physical Chemistry C, 2020, 124, 26320-26331.	3.1	21
33	Formation and enhanced photodegradation of chlorinated derivatives of bisphenol A in wastewater treatment plant effluent. Water Research, 2020, 184, 116002.	11.3	21
34	Low-temperature formaldehyde oxidation over manganese oxide catalysts: Potassium mediated lattice oxygen mobility. Molecular Catalysis, 2020, 497, 111204.	2.0	20
35	Characteristics and source attribution of PM2.5 during 2016 G20 Summit in Hangzhou: Efficacy of radical measures to reduce source emissions. Journal of Environmental Sciences, 2021, 106, 47-65.	6.1	16

 $_{36}$ Separation, Identification, and Quantitation of Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids in Chinese Waxberry (<i>Myrica) Tj ETQq0 0 0 rgBT / $_{3.1}^{0}$ Phenolic Acids

CHENGJUN WANG

#	Article	IF	CITATIONS
37	Anaerobic degradation of chlorothalonil in four paddy soils. Ecotoxicology and Environmental Safety, 2011, 74, 1000-1005.	6.0	13
38	Extraction of natural estrogens in environmental waters by dispersive multiwalled carbon nanotube-based agitation-assisted adsorption and ultrasound-assisted desorption. Analytical Methods, 2014, 6, 1235-1241.	2.7	13
39	Photolysis of bis(2-ethylhexyl) phthalate in aqueous solutions at the presence of natural water photoreactive constituents under simulated sunlight irradiation. Environmental Science and Pollution Research, 2019, 26, 26797-26806.	5.3	13
40	Insights into bromate reduction by Fe(II): Multiple radicals generation and carbamazepine oxidation. Chemical Engineering Journal, 2022, 431, 133957.	12.7	13
41	Occurrence and photodegradation of methylmercury in surface water of Wen-Rui-Tang River network, Wenzhou, China. Environmental Science and Pollution Research, 2017, 24, 11289-11298.	5.3	12
42	Screening of the phenolic profile and their antioxidative activities of methanol extracts of Myrica rubra fruits, leaves and bark. Journal of Food Measurement and Characterization, 2018, 12, 128-134.	3.2	11
43	Comparison of NO2 and SO2 Measurements Using Different Passive Samplers in Tropical Environment. Aerosol and Air Quality Research, 2014, 14, 355-363.	2.1	11
44	Simultaneous determination of three naturally occurring estrogens in environmental waters by highâ€performance liquid chromatography. Journal of Separation Science, 2011, 34, 2371-2375.	2.5	10
45	Speciation Determination of Selenium in Seafood by High-Performance Ion-Exchange Chromatography-Hydride Generation-Atomic Fluorescence Spectrometry. Food Analytical Methods, 2015, 8, 1739-1745.	2.6	8
46	Selective Catalytic Reduction of NO by NH ₃ in Flue Gases over a Cu-V/Al ₂ O ₃ Catalyst at Low Temperature. Environmental Engineering Science, 2009, 26, 1429-1434.	1.6	7
47	Effects of imidazolium room temperature ionic liquids on the fluorescent properties of norfloxacin. Luminescence, 2012, 27, 495-500.	2.9	6
48	Adsorption of Ni(II) from Aqueous Solution by Polyaminated Crosslinked Ni(II)-Imprinted Chitosan Derivative Beads. Environmental Engineering Science, 2013, 30, 646-652.	1.6	6
49	Simultaneous measurement of multiple organic tracers in fine aerosols from biomass burning and fungal spores by HPLC-MS/MS. RSC Advances, 2018, 8, 34136-34150.	3.6	6
50	Photo-generated hydroxyl radicals contribute to the formation of halogen radicals leading to ozone depletion on and within polar stratospheric clouds surface. Chemosphere, 2022, 291, 132816.	8.2	6
51	A Comparative Study of Mn/Co Binary Metal Catalysts Supported on Two Commercial Diatomaceous Earths for Oxidation of Benzene. Catalysts, 2018, 8, 111.	3.5	4
52	Fabrication of β-cyclodextrin modified mesostructured silica coated multi-walled carbon nanotubes composites and application for paraben removal. Water Science and Technology, 2018, 78, 1001-1009.	2.5	4
53	Enhanced photodegradation of applied dithianon fungicides on plant leaves by dissolved substances in atmosphere under simulated sunlight. Chemosphere, 2020, 254, 126807.	8.2	4
54	Mechanistic study on photochemical generation of l•/l2•â^' radicals in coastal atmospheric aqueous aerosol. Science of the Total Environment, 2022, 825, 154080.	8.0	3

#	Article	IF	CITATIONS
55	Pre-column derivatization and HPLC-ESI-MS/MS determination of fatty acids in Sargassum fusiforme algae. Journal of Food Measurement and Characterization, 2021, 15, 4482-4489.	3.2	1
56	The Change of Tangshan Nanhu Wetland Landscape and Ecological Quality Assessment. Key Engineering Materials, 2011, 474-476, 200-204.	0.4	0