
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/164503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordinating assembly of a bacterial macromolecular machine. Nature Reviews Microbiology, 2008, 6, 455-465.	13.6	609
2	Coupling of Flagellar Gene Expression to Flagellar Assembly in Salmonella enterica Serovar Typhimurium and Escherichia coli. Microbiology and Molecular Biology Reviews, 2000, 64, 694-708.	2.9	579
3	Regulation of flagellar assembly. Current Opinion in Microbiology, 2002, 5, 160-165.	2.3	316
4	Energy source of flagellar type III secretion. Nature, 2008, 451, 489-492.	13.7	289
5	Bacterial Nanomachines: The Flagellum and Type III Injectisome. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000299-a000299.	2.3	212
6	The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, σ28. Nature Structural Biology, 1997, 4, 285-291.	9.7	174
7	Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Molecular Microbiology, 2000, 37, 1220-1231.	1.2	169
8	Identification of New Flagellar Genes of Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2006, 188, 2233-2243.	1.0	140
9	Translation/Secretion Coupling by Type III Secretion Systems. Cell, 2000, 102, 487-497.	13.5	127
10	The Effects of Codon Context on In Vivo Translation Speed. PLoS Genetics, 2014, 10, e1004392.	1.5	124
11	An infrequent molecular ruler controls flagellar hook length in <i>Salmonella enterica</i> . EMBO Journal, 2011, 30, 2948-2961.	3.5	123
12	Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biology, 2017, 15, e2004303.	2.6	108
13	The role of anti-sigma factors in gene regulation. Molecular Microbiology, 1995, 16, 397-404.	1.2	103
14	The Type III Flagellar Export Specificity Switch is Dependent on FliK Ruler and a Molecular Clock. Journal of Molecular Biology, 2006, 359, 466-477.	2.0	100
15	Systematic Nomenclature for GGDEF and EAL Domain-Containing Cyclic Di-GMP Turnover Proteins of Escherichia coli. Journal of Bacteriology, 2016, 198, 7-11.	1.0	96
16	FliK regulates flagellar hook length as an internal ruler. Molecular Microbiology, 2007, 64, 1404-1415.	1.2	92
17	Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane. Science, 2017, 356, 197-200.	6.0	86
18	DIRECTED FORMATION OF DELETIONS AND DUPLICATIONS USING Mu <i>d</i> (Ap, <i>lac</i>). Genetics, 1985, 109, 263-282.	1.2	83

#	Article	IF	CITATIONS
19	The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL. Molecular Microbiology, 2003, 49, 1333-1345.	1.2	82
20	YdiV: a dual function protein that targets FlhDC for ClpXPâ€dependent degradation by promoting release of DNAâ€bound FlhDC complex. Molecular Microbiology, 2012, 83, 1268-1284.	1.2	82
21	ATPase-Independent Type-III Protein Secretion in Salmonella enterica. PLoS Genetics, 2014, 10, e1004800.	1.5	78
22	The Salmonella Spi1 Virulence Regulatory Protein HilD Directly Activates Transcription of the Flagellar Master Operon <i>flhDC</i> . Journal of Bacteriology, 2014, 196, 1448-1457.	1.0	77
23	The flagellar-specific transcription factor, Â28, is the Type III secretion chaperone for the flagellar-specific anti-Â28 factor FlgM. Genes and Development, 2006, 20, 2315-2326.	2.7	70
24	Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nature Communications, 2020, 11, 2013.	5.8	68
25	The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. Genes and Development, 2007, 21, 2326-2335.	2.7	62
26	Molecular structure of the intact bacterial flagellar basal body. Nature Microbiology, 2021, 6, 712-721.	5.9	61
27	Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook. Nature Communications, 2017, 8, 14276.	5.8	60
28	The Effect of Cell Growth Phase on the Regulatory Cross-Talk between Flagellar and Spi1 Virulence Gene Expression. PLoS Pathogens, 2014, 10, e1003987.	2.1	58
29	Mechanism of typeâ€ <scp>III</scp> protein secretion: Regulation of <scp>F</scp> lh <scp>A</scp> conformation by a functionally critical chargedâ€residue cluster. Molecular Microbiology, 2017, 104, 234-249.	1.2	57
30	A multipartite interaction between Salmonella transcription factor Ïf28 and its anti-sigma factor FlgM: implications for Ïf28 holoenzyme destabilization through stepwise binding. Journal of Molecular Biology, 2001, 306, 915-929.	2.0	55
31	Câ€ring requirement in flagellar type III secretion is bypassed by FlhDC upregulation. Molecular Microbiology, 2010, 75, 376-393.	1.2	55
32	Flk prevents premature secretion of the anti-sigma factor FlgM into the periplasm. Molecular Microbiology, 2006, 60, 630-643.	1.2	52
33	Interaction of FliK with the bacterial flagellar hook is required for efficient export specificity switching. Molecular Microbiology, 2009, 74, 239-251.	1.2	52
34	T-POP Array Identifies EcnR and Pefl-SrgD as Novel Regulators of Flagellar Gene Expression. Journal of Bacteriology, 2009, 191, 1498-1508.	1.0	47
35	The role of the FliK molecular ruler in hookâ€length control in <i>Salmonella enterica</i> . Molecular Microbiology, 2010, 75, 1272-1284.	1.2	47
36	Rod-to-Hook Transition for Extracellular Flagellum Assembly Is Catalyzed by the L-Ring-Dependent Rod Scaffold Removal. Journal of Bacteriology, 2014, 196, 2387-2395.	1.0	45

#	Article	IF	CITATIONS
37	Mutations in Flk, FlgG, FlhA, and FlhE That Affect the Flagellar Type III Secretion Specificity Switch in <i>Salmonella enterica</i> . Journal of Bacteriology, 2009, 191, 3938-3949.	1.0	44
38	The type III secretion determinants of the flagellar anti-transcription factor, FlgM, extend from the amino-terminus into the anti-sigma28 domain. Molecular Microbiology, 1998, 30, 1029-1040.	1.2	43
39	Selective Purification of Recombinant Neuroactive Peptides Using the Flagellar Type III Secretion System. MBio, 2012, 3, .	1.8	38
40	Dual host specificity of phage SP6 is facilitated by tailspike rotation. Virology, 2017, 507, 206-215.	1.1	37
41	Multiple Promoters Contribute to Swarming and the Coordination of Transcription with Flagellar Assembly in <i>Salmonella</i> . Journal of Bacteriology, 2010, 192, 4752-4762.	1.0	35
42	Flk Couples <i>flgM</i> Translation to Flagellar Ring Assembly in <i>Salmonella typhimurium</i> . Journal of Bacteriology, 1998, 180, 5384-5397.	1.0	35
43	Molecular ruler determines needle length for the <i>Salmonella</i> Spi-1 injectisome. Proceedings of the United States of America, 2015, 112, 4098-4103.	3.3	33
44	Case for the genetic code as a triplet of triplets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4745-4750.	3.3	33
45	Posttranscriptional Control of the Salmonella enterica Flagellar Hook Protein FlgE. Journal of Bacteriology, 2006, 188, 3308-3316.	1.0	30
46	Typeâ€III secretion pore formed by flagellar protein FliP. Molecular Microbiology, 2018, 107, 94-103.	1.2	30
47	RflM Functions as a Transcriptional Repressor in the Autogenous Control of the Salmonella Flagellar Master Operon flhDC. Journal of Bacteriology, 2013, 195, 4274-4282.	1.0	28
48	Comparative analysis of the secretion capability of early and late flagellar type <scp>III</scp> secretion substrates. Molecular Microbiology, 2014, 93, 505-520.	1.2	28
49	The Flagellar Hook Protein, FlgE, of Salmonella enterica Serovar Typhimurium Is Posttranscriptionally Regulated in Response to the Stage of Flagellar Assembly. Journal of Bacteriology, 2000, 182, 4044-4050.	1.0	27
50	Genetic Transplantation: Salmonella enterica Serovar Typhimurium as a Host To Study Sigma Factor and Anti-Sigma Factor Interactions in GeneticallyIntractable Systems. Journal of Bacteriology, 2006, 188, 103-114.	1.0	27
51	FliT Selectively Enhances Proteolysis of FlhC Subunit in FlhD4C2 Complex by an ATP-dependent Protease, ClpXP. Journal of Biological Chemistry, 2014, 289, 33001-33011.	1.6	26
52	Genome Sequence of Salmonella Phage χ. Genome Announcements, 2015, 3, .	0.8	25
53	The Helicobacter pylori Anti-Sigma Factor FlgM Is Predominantly Cytoplasmic and Cooperates with the Flagellar Basal Body Protein FlhA. Journal of Bacteriology, 2009, 191, 4824-4834.	1.0	21
54	Flagellar Hook Length Is Controlled by a Secreted Molecular Ruler. Journal of Bacteriology, 2012, 194, 4793-4796.	1.0	21

#	Article	IF	CITATIONS
55	The bacterium has landed. Science, 2017, 358, 446-447.	6.0	21
56	Variability in bacterial flagella re-growth patterns after breakage. Scientific Reports, 2017, 7, 1282.	1.6	20
57	In Vivo Identification of Intermediate Stages of the DNA Inversion Reaction Catalyzed by the Salmonella Hin Recombinase. Genetics, 1998, 149, 1649-1663.	1.2	20
58	Genetic Dissection of the Consensus Sequence for the Class 2 and Class 3 Flagellar Promoters. Journal of Molecular Biology, 2008, 379, 936-952.	2.0	19
59	Thailandamide, a Fatty Acid Synthesis Antibiotic That Is Coexpressed with a Resistant Target Gene. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	18
60	σ 28 -Dependent Transcription in Salmonella enterica Is Independent of Flagellar Shearing. Journal of Bacteriology, 2006, 188, 5196-5203.	1.0	17
61	Rebuttal: Mystery of FliK in Length Control of the Flagellar Hook. Journal of Bacteriology, 2012, 194, 4801-4801.	1.0	14
62	Analysis of Factors That Affect FlgM-Dependent Type III Secretion for Protein Purification with Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2014, 196, 2333-2347.	1.0	14
63	Role of arginineâ€43 and arginineâ€69 of the Hin recombinase catalytic domain in the binding of Hin to the hix DNA recombination sites. Molecular Microbiology, 1997, 24, 1235-1247.	1.2	12
64	Use of Operon and Gene Fusions to Study Gene Regulation in Salmonella. Methods in Enzymology, 2007, 421, 140-158.	0.4	12
65	Flagellum Length Control: How Long Is Long Enough?. Current Biology, 2017, 27, R413-R415.	1.8	12
66	Coupling of Flagellar Gene Expression with Assembly in Salmonella enterica. Methods in Molecular Biology, 2017, 1593, 47-71.	0.4	12
67	A Little Gene with Big Effects: a serT Mutant Is Defective in flgM Gene Translation. Journal of Bacteriology, 2006, 188, 297-304.	1.0	11
68	Genetic Analysis of the Salmonella FliE Protein That Forms the Base of the Flagellar Axial Structure. MBio, 2021, 12, e0239221.	1.8	10
69	Autonomous and FliK-Dependent Length Control of the Flagellar Rod in <i>Salmonella enterica</i> . Journal of Bacteriology, 2009, 191, 6469-6472.	1.0	9
70	Type 1 interferon-dependent repression of NLRC4 and iPLA2 licenses down-regulation of <i>Salmonella</i> flagellin inside macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29811-29822.	3.3	8
71	Putting a lid on it. , 2001, 8, 96-97.		5
72	The Locus of Enterocyte Effacement Type III Secretion Specificity Switch: the Devil's in the Data for a Common Mechanism. Journal of Bacteriology, 2012, 194, 6019-6022.	1.0	4

#	Article	IF	CITATIONS
73	Targeting early proximal-rod component substrate FlgB to FlhB for flagellar-type III secretion in Salmonella. PLoS Genetics, 2022, 18, e1010313.	1.5	4
74	Generation of Deletions and Duplications Using Transposons as Portable Regions of Homology with Emphasis on Mud and Tn10 Transposons. Methods in Enzymology, 2007, 421, 51-68.	0.4	3
75	Mg2+-dependent translational speed bump acts to regulate gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14881-14883.	3.3	2
76	Phage and Bacterial Genetics at Cold Spring Harbor Laboratory. , 0, , 23-25.		1
77	Keeping your lawn wet. EMBO Reports, 2005, 6, 518-519.	2.0	0
78	2P265 Structure of the Bacterial Flagellar Poly-rod by Electron Cryomicroscopy and Image Analysis(39. Cell motility,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006). Seibutsu Butsuri, 2006, 46, S362.	0.0	0
79	2P027 Structural insights into the difference between the rod as a drive shaft and the hook as a universal joint of the bacterial flagellum(Proteins-structure and structure-function) Tj ETQq1 1 0.784314 rgBT /O	vedaack 1() T ɓ 50 497 T
80	"Lost in translation: Seeing the forest by focusing on the trees― RNA Biology, 2018, 15, 182-185.	1.5	0
81	Fishing for Fluke: the Genetics of Flk and the Flagellar Type 3 Secretion Specificity Switch. , 0, , 99-113.		0
82	John Roth's Paths and Pathways. , 0, , 1-7.		0
83	Integration of the pSLT Plasmid into the Salmonella Chromosome Results in a Temperature-Sensitive Growth Defect Due to Aberrant DNA Replication, Journal of Bacteriology, 2020, 202, .	1.0	0