
Nikolai Kh Petrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1644266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inclusion Complexes of Styryl Dyes with Cucurbiturils: Ultrafast Relaxation of Electronically Excited States. High Energy Chemistry, 2022, 56, 149-157.	0.9	2
2	A Supercontinuum Generator with Pumping by Pulses of Chromium–Forsterite-Based Femtosecond Laser in Transparent Condensed Media. Instruments and Experimental Techniques, 2020, 63, 846-852.	0.5	2
3	Mechanism of Complexation of Cucurbiturils with Styryl Dyes in the Presence of Sodium Cations. High Energy Chemistry, 2020, 54, 403-413.	0.9	2
4	Ultrafast Dynamics of Electronically Excited Host–Guest Complexes of Cucurbiturils with Styryl Dyes. ACS Omega, 2019, 4, 11500-11507.	3.5	7
5	A Wide-Band Femtosecond Pump–Probe Spectrometer Based on a Laser with an Active Medium Based on Chromium-Doped Forsterite Crystal. Instruments and Experimental Techniques, 2019, 62, 548-553.	0.5	1
6	Fluorescent Properties of Inclusion Complexes of a Styryl Dye with Metal–Organic Coordination Polymer of Zinc Lactate Terephthalate. High Energy Chemistry, 2019, 53, 170-172.	0.9	0
7	[2+2] Photocycloaddition of Styryl Dyes in the Cucurbit[8]uril Cavity and Its Ultrafast Dynamics. High Energy Chemistry, 2019, 53, 204-210.	0.9	2
8	The Time-Resolved Fluorescence Stokes Shift of Cucurbit[6]Uril Complexes with a Pyridinium Styryl Dye. Journal of Fluorescence, 2018, 28, 883-887.	2.5	5
9	A Fluorimeter on the Basis of a Femtosecond Cr+4: Forsterite Laser. Instruments and Experimental Techniques, 2018, 61, 556-561.	0.5	7
10	Effect of Heavy Water on Ultrafast Dynamics of the Fluorescence Stokes Shift for a Styryl Dye and its Complexes with Cucurbiturils. High Energy Chemistry, 2018, 52, 269-271.	0.9	2
11	An ultrafast pre-organization of the [2 + 2] photocycloaddition of styryl dyes in 1:2 host-guest complexes with cucurbit[8]urils. Chemical Physics Letters, 2017, 673, 99-102.	2.6	4
12	Adsorption phenomena in the systems containing macrocyclic cavitand cucurbit [7]uryl. Russian Journal of Electrochemistry, 2017, 53, 103-109.	0.9	9
13	Adsorption of Ñucurbit[6]uril and styryl dye complexes on the surface of silver nanoparticles. Nanotechnologies in Russia, 2017, 12, 125-131.	0.7	2
14	Time-resolved fluorescence anisotropy of styryl dye–cucurbituril complexes. High Energy Chemistry, 2017, 51, 72-74.	0.9	3
15	Ultrafast kinetics of fluorescence decay of aqueous solutions of styryl dye derivatives and their complexes with cucurbit[7]uril. Nanotechnologies in Russia, 2016, 11, 221-226.	0.7	5
16	Photophysical properties of aqueous solutions of a styryl dye in the presence of cucurbit[n]uril (n =) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf

17	Ultrafast relaxation of electronically-excited states of a styryl dye in the cavity of cucurbit[n]urils (n= 6, 7). Chemical Physics Letters, 2016, 647, 157-160.	2.6	13
18	Supramolecular assembler based on cucurbit[8]uril: Photodimerization of a styryl dye in water. High Energy Chemistry, 2014, 48, 253-259.	0.9	14

Nikolai Kh Petrov

#	Article	IF	CITATIONS
19	A fast relaxation of electronically-excited inclusion complexes of a styryl dye with cucurbit[7]uril. Chemical Physics Letters, 2014, 610-611, 91-94.	2.6	9
20	The Distribution of Internal Distances for Ionic Pairs in Solvents of Various Polarity. , 2012, , 19-48.		0
21	The microheterogeneous structure of ionic liquid mixtures with organic solvent determined by a cyanine-dye fluorescent probe. Chemical Physics Letters, 2012, 551, 111-114.	2.6	9
22	The dielectric continuum solvent model adapted for treating preferential solvation effects. Journal of Electroanalytical Chemistry, 2011, 660, 339-346.	3.8	10
23	Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations. Molecular Physics, 2011, 109, 217-227.	1.7	5
24	Decay kinetics of the excited S1 state of the cyanine dye Cy+lâ^' (thiacarbocyanine iodide): The computation of quantum yields for different pathways. Journal of Chemical Physics, 2011, 135, 144504.	3.0	2
25	The 1:1 Hostâ ~Guest Complexation between Cucurbit[7]uril and Styryl Dye. Journal of Physical Chemistry A, 2011, 115, 4505-4510.	2.5	48
26	Primary photoprocesses in molecules of carbocyanine dyes in binary solvent mixtures. High Energy Chemistry, 2010, 44, 25-30.	0.9	4
27	Effect of counterions on photoprocesses of thiacarbocyanine in a binary solvent blend. High Energy Chemistry, 2010, 44, 376-382.	0.9	3
28	The specific feature of photochemical processes in molecules of 3,3′-dialkylthiacarbocyanines in binary solvent mixtures. High Energy Chemistry, 2009, 43, 38-43.	0.9	10
29	The effect of cucurbit[7]uril on photophysical properties of aqueous solution of 3,3′-diethylthiacarbocyanine iodide dye. Chemical Physics Letters, 2009, 480, 96-99.	2.6	45
30	Preferential solvation of spherical ions in binary DMSO/benzene mixtures. Journal of Chemical Physics, 2009, 130, 024504.	3.0	11
31	Advanced dielectric continuum model of preferential solvation. Journal of Chemical Physics, 2009, 130, 024505.	3.0	10
32	Solvation-Shell Effect on the Cyanine-Dye Fluorescence in Binary Liquid Mixtures. Zeitschrift Fur Physikalische Chemie, 2007, 221, 537-547.	2.8	10
33	A fluorescence spectroscopy study of preferential solvation in binary solvents. High Energy Chemistry, 2006, 40, 22-34.	0.9	19
34	Structure determination of thiacyanine dye J-aggregates in thin films: Comparison between spectroscopy and wide angle X-ray scattering. Physical Chemistry Chemical Physics, 2004, 6, 3309.	2.8	22
35	An Absorption–Fluorescence Method for Estimation of the Efficiency of Nonradiative Relaxation of Cyanine Dyes. High Energy Chemistry, 2004, 38, 381-386.	0.9	3
36	Nonradiative Relaxation of Thiacarbocyanine Dyes in Binary Mixtures. Journal of Fluorescence, 2004, 14, 87-89.	2.5	3

Nikolai Kh Petrov

#	Article	IF	CITATIONS
37	Photophysical Properties of 3,3â€~-Diethylthiacarbocyanine Iodide in Binary Mixtures. Journal of Physical Chemistry A, 2003, 107, 6341-6344.	2.5	20
38	Title is missing!. Journal of Fluorescence, 2002, 12, 19-24.	2.5	7
39	A simple kinetic model of preferential solvation in binary mixtures. Chemical Physics Letters, 2001, 349, 517-520.	2.6	24
40	Intramolecular Electron Hopping in Double Carbazole Molecules Studied by the Fluorescence-Detected Magnetic Field Effect. Journal of Physical Chemistry A, 1999, 103, 9601-9604.	2.5	17
41	Comment on the "Magnetic Field Effects on Exciplex Luminescence in Waterâ^'Tetrahydrofuran and Waterâ^'Dioxane Mixtures― Journal of Physical Chemistry A, 1998, 102, 7878-7879.	2.5	4
42	Transient dynamics of solvatochromic shift in binary solvents. Journal of Chemical Physics, 1998, 108, 2326-2330.	3.0	28
43	Metal-Ion Detection by the Magnetic-Field-Sensitive Fluorescence of Intramolecular Exciplexes Containing Aza-Crown-Ether Moieties as Electron Donor. Journal of Physical Chemistry A, 1997, 101, 7043-7046.	2.5	14
44	Fluorescence-Detected Magnetic Field Effects in Exciplex Systems Containing Azacrown Ethers as Electron Donor. The Journal of Physical Chemistry, 1996, 100, 6368-6370.	2.9	22
45	Study of preferential solvation in binary solvent mixtures by the spectro-streak picosecond technique. Chemical Physics Letters, 1995, 241, 127-132.	2.6	37
46	Magnetic Field Effects on Exciplex Fluorescence of the Pyrene–Azacrown Ether System in the Presence of Alkali and Alkaline Earth Salts. Mendeleev Communications, 1995, 5, 4-5.	1.6	2
47	Study of preferential solvation in binary solvent mixtures by the fluorescence-detected magnetic field effect. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 109.	1.7	23
48	Magnetic field effects detected by exciplex fluorescence and preferential solvation in binary solvents. The effect of temperature. Russian Chemical Bulletin, 1993, 42, 1746-1748.	1.5	2
49	Polar molecular clusters produced upon photoinduced electron transfer in an intermolecular exciplex in binary solvents. The Journal of Physical Chemistry, 1992, 96, 2901-2903.	2.9	32
50	Potentiation of the cage effect in binary solvents detected by magnetic modulation of exciplex fluorescence. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 2139-2144.	0.0	1
51	Magnetic modulation of the luminescence of pyrene-N,N-dimethylaniline exciplexes in solutions of reverse micelles. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1746-1748.	0.0	0
52	Solvent effect on magnetic field modulation of excbplex fluorescence in polar solutions. Chemical Physics Letters, 1981, 82, 339-343.	2.6	75