Feng-Shou Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1644194/publications.pdf

Version: 2024-02-01

186265 223800 2,456 75 28 46 citations h-index g-index papers 77 77 77 2267 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Organic Nanoparticles Based on D-A-D Small Molecule: Self-Assembly, Photophysical Properties, and Synergistic Photodynamic/Photothermal Effects. Materials, 2022, 15, 502.	2.9	2
2	Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition. Nano Energy, 2022, 93, 106836.	16.0	25
3	Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Materials Today Bio, 2022, 13, 100198.	5 . 5	28
4	Nanoplatform Selfâ€Assembly from Small Molecules of Porphyrin Derivatives for NIRâ€II Fluorescence Imaging Guided Photothermalâ€Immunotherapy. Advanced Healthcare Materials, 2022, 11, e2102526.	7.6	18
5	A multiscale screening strategy for the identification of novel xanthine oxidase inhibitors based on the pharmacological features of febuxostat analogues. New Journal of Chemistry, 2022, 46, 6549-6559.	2.8	5
6	In-situ growth of boronic acid-decorated metal-organic framework on Fe3O4 nanospheres for specific enrichment of cis-diol containing nucleosides. Analytica Chimica Acta, 2022, 1206, 339772.	5. 4	22
7	Facile fabrication of iron porphyrin-based porous organic polymer with excellent oxidase-like activity for colorimetric detection of sulfide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129727.	4.7	5
8	Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds. Journal of Chromatography A, 2022, 1677, 463281.	3.7	12
9	Small organic molecule-based nanoparticles with red/near-infrared aggregation-induced emission for bioimaging and PDT/PTT synergistic therapy. Materials Chemistry Frontiers, 2021, 5, 406-417.	5.9	66
10	Metalloporphyrin-based porous organic polymer as an efficient catalyst for cycloaddition of epoxides and CO2. Journal of Solid State Chemistry, 2021, 293, 121770.	2.9	24
11	Single molecular-based nanoparticles with aggregation-induced emission characteristics for fluorescence imaging and efficient cancer phototherapy. Dyes and Pigments, 2021, 187, 109130.	3.7	17
12	Cobalt phthalocyanine-based nanodots as efficient catalysts for chemical conversion of CO2 under ambient conditions. Journal of Materials Science, 2021, 56, 10990-10999.	3.7	9
13	Oxidase Mimetic Activity of a Metalloporphyrin-Containing Porous Organic Polymer and Its Applications for Colorimetric Detection of Both Ascorbic Acid and Glutathione. ACS Sustainable Chemistry and Engineering, 2021, 9, 5412-5421.	6.7	58
14	Zeolitic imidazolate framework-8/ fluorinated graphene coated SiO2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples. Talanta, 2021, 228, 122229.	5.5	27
15	Exploration of Novel Xanthine Oxidase Inhibitors Based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an Integrated in Silico Study. International Journal of Molecular Sciences, 2021, 22, 8122.	4.1	5
16	Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111841.	5.0	16
17	Porphyrin-based covalent organic framework coated stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in water and soil samples. Microchemical Journal, 2021, 168, 106364.	4.5	31
18	Cobalt-Doped Carbon Quantum Dots with Peroxidase-Mimetic Activity for Ascorbic Acid Detection through Both Fluorometric and Colorimetric Methods. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 49453-49461.	8.0	59

#	Article	IF	Citations
19	Exploration of Novel Hepatitis B Virus Capsid Assembly Modulators by Integrated Molecular Simulations. ChemistrySelect, 2021, 6, 12524-12536.	1.5	1
20	Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities. European Journal of Medicinal Chemistry, 2020, 186, 111864.	5.5	21
21	Self-Assembled Naphthalimide Conjugated Porphyrin Nanomaterials with D–A Structure for PDT/PTT Synergistic Therapy. Bioconjugate Chemistry, 2020, 31, 663-672.	3.6	47
22	Multifunctional theranostic nanosystems enabling photothermal-chemo combination therapy of triple-stimuli-responsive drug release with magnetic resonance imaging. Biomaterials Science, 2020, 8, 1875-1884.	5.4	16
23	A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydrate Polymers, 2020, 231, 115694.	10.2	34
24	Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRIâ€"guided photodynamic/photothermal combined treatment. Nanotechnology, 2020, 31, 135101.	2.6	18
25	Red-Emissive Ruthenium-Containing Carbon Dots for Bioimaging and Photodynamic Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 869-876.	5.0	108
26	Self-assembly of methylene violet-conjugated perylene diimide with photodynamic/photothermal properties for DNA photocleavage and cancer treatment. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111351.	5.0	22
27	Computationally exploring novel xanthine oxidase inhibitors using docking-based 3D-QSAR, molecular dynamics, and virtual screening. New Journal of Chemistry, 2020, 44, 19276-19287.	2.8	7
28	Exploring the Interaction Mechanism of Desmethyl-broflanilide in Insect GABA Receptors and Screening Potential Antagonists by <i>In Silico</i> Simulations. Journal of Agricultural and Food Chemistry, 2020, 68, 14768-14780.	5.2	15
29	Triphenylamine-substituted zinc porphyrin nanoparticles with photodynamic/photothermal activity for cancer phototherapy in vitro. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1113-1120.	0.8	2
30	Gd (III) DOTAâ€Functionalized Phthalocyanine Nanodots for Magnetic Resonance Imaging and Photothermal/Photodynamic Therapy. Advanced Materials Interfaces, 2020, 7, 2000713.	3.7	7
31	Facile Preparation of Phthalocyanine-Based Nanodots for Photoacoustic Imaging and Photothermal Cancer Therapy In Vivo. ACS Biomaterials Science and Engineering, 2020, 6, 5230-5239.	5.2	27
32	A Simple Strategy to Fabricate Phthalocyanine-Encapsulated Nanodots for Magnetic Resonance Imaging and Antitumor Phototherapy. ACS Applied Bio Materials, 2020, 3, 3681-3689.	4.6	10
33	A colorimetric and fluorescence turn-on probe for the detection of palladium in aqueous solution and its application in vitro and in vivo. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118547.	3.9	15
34	In silico Design of Novel HIV-1 NNRTIs Based on Combined Modeling Studies of Dihydrofuro[3,4-d]pyrimidines. Frontiers in Chemistry, 2020, 8, 164.	3.6	26
35	Biocompatible conjugated porphyrin nanoparticles with photodynamic/photothermal performances in cancer therapy. Dyes and Pigments, 2020, 182, 108664.	3.7	27
36	Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Nanotechnology, 2020, 31, 315101.	2.6	8

#	Article	IF	Citations
37	Microwave-Assisted Preparation of Activated Carbon Modified by Zinc Chloride as a Packing Material for Column Separation of Saccharides. ACS Omega, 2020, 5, 10106-10114.	3.5	13
38	Palladium porphyrin complexes for photodynamic cancer therapy: effect of porphyrin units and metal. Photochemical and Photobiological Sciences, 2020, 19, 905-912.	2.9	34
39	Synthesis of MOF@COF Hybrid Magnetic Adsorbent for Microextraction of Sulfonamides in Food and Environmental Samples. Food Analytical Methods, 2020, 13, 1346-1356.	2.6	41
40	Organic small molecular nanoparticles based on self-assembly of amphiphilic fluoroporphyrins for photodynamic and photothermal synergistic cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110345.	5.0	37
41	Synthesis, singlet oxygen generation and DNA photocleavage of \hat{l}^2 , $\hat{l}^2\hat{a}$ \in 2-conjugated polycationic porphyrins. Journal of Porphyrins and Phthalocyanines, 2019, 23, 655-663.	0.8	15
42	N-Methylpyridylporphyrin tailed with folate conjugate as a potential lysosomal-targeted photosensitizer: Synthesis, DNA interaction, singlet oxygen and subcellular localization. Journal of Porphyrins and Phthalocyanines, 2019, 23, 679-684.	0.8	3
43	Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Analytica Chimica Acta, 2019, 1089, 66-77.	5.4	99
44	Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21408-21416.	8.0	92
45	Platinated porphyrin tailed with folic acid conjugate for cell-targeted photodynamic activity. Journal of Luminescence, 2019, 214, 116552.	3.1	14
46	A folate-conjugated platinum porphyrin complex as a new cancer-targeting photosensitizer for photodynamic therapy. Organic and Biomolecular Chemistry, 2019, 17, 5367-5374.	2.8	47
47	Manganese-doped carbon quantum dots for fluorometric and magnetic resonance (dual mode) bioimaging and biosensing. Mikrochimica Acta, 2019, 186, 315.	5.0	43
48	Mitochondria-targeting Pt/Mn porphyrins as efficient photosensitizers for magnetic resonance imaging and photodynamic therapy. Dyes and Pigments, 2019, 166, 189-195.	3.7	39
49	<i>In silico</i> study of 3-hydroxypyrimidine-2,4-diones as inhibitors of HIV RT-associated RNase H using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore models. New Journal of Chemistry, 2019, 43, 17004-17017.	2.8	21
50	Ln(III) chelates-functionalized carbon quantum dots: Synthesis, optical studies and multimodal bioimaging applications. Colloids and Surfaces B: Biointerfaces, 2019, 175, 272-280.	5.0	42
51	Metalloporphyrin–indomethacin conjugates as new photosensitizers for photodynamic therapy. Journal of Biological Inorganic Chemistry, 2019, 24, 53-60.	2.6	31
52	Deep red PhOLED from dimeric salophen Platinum(II) complexes. Dyes and Pigments, 2019, 162, 590-598.	3.7	65
53	Methylene violet 3RAX-conjugated porphyrin for photodynamic therapy: synthesis, DNA photocleavage, and cell study. RSC Advances, 2018, 8, 4472-4477.	3.6	25
54	Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Optical Materials, 2018, 77, 258-263.	3.6	88

#	Article	IF	CITATIONS
55	Carbon Dots @ Platinum Porphyrin Composite as Theranostic Nanoagent for Efficient Photodynamic Cancer Therapy. Nanoscale Research Letters, 2018, 13, 357.	5.7	63
56	Red/Nearâ€Infrared Emissive Metalloporphyrinâ€Based Nanodots for Magnetic Resonance Imagingâ€Guided Photodynamic Therapy In Vivo. Particle and Particle Systems Characterization, 2018, 35, 1800208.	2.3	54
57	Synthesis, DNA binding mode, singlet oxygen photogeneration and DNA photocleavage activity of ruthenium compounds with porphyrin–imidazo[4,5â€ <i>f</i>]phenanthroline conjugated ligand. Applied Organometallic Chemistry, 2018, 32, e4468.	3.5	20
58	Porphyrin-Implanted Carbon Nanodots for Photoacoustic Imaging and in Vivo Breast Cancer Ablation. ACS Applied Bio Materials, 2018, 1, 110-117.	4.6	102
59	Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells. Colloids and Surfaces B: Biointerfaces, 2018, 170, 194-200.	5.0	72
60	DNA Photocleavage and Binding Modes of Methylene Violet 3RAX and its Derivatives: Effect of Functional Groups. Australian Journal of Chemistry, 2017, 70, 830.	0.9	16
61	Platinated porphyrin as a new organelle and nucleus dual-targeted photosensitizer for photodynamic therapy. Organic and Biomolecular Chemistry, 2017, 15, 5764-5771.	2.8	46
62	Synthesis, singlet oxygen generation, photocytotoxicity and subcellular localization of azobisporphyrins as potentially photodynamic therapeutic agents <i>in vitro</i> cell study. Journal of Porphyrins and Phthalocyanines, 2017, 21, 122-127.	0.8	19
63	New platinum(II) one-armed Schiff base complexes for blue and orange PHOLEDs applications. Organic Electronics, 2017, 42, 153-162.	2.6	39
64	Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. International Journal of Nanomedicine, 2017, Volume 12, 7375-7391.	6.7	137
65	Mononuclear copper(I) bromide complexes chelated with bis(pyrazol-1-ylmethyl)-pyridine ligands: Structures, electronic properties and solid state photoluminescence. Journal of Luminescence, 2016, 177, 82-87.	3.1	9
66	Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. Journal of Materials Chemistry B, 2016, 4, 6366-6372.	5.8	92
67	Synthesis, crystal structure and photophysical study of luminescent three-coordinate cuprous bromide complexes based on pyrazole derivatives. Journal of Coordination Chemistry, 2016, 69, 926-933.	2.2	10
68	Synthesis, structural characterization and photophysical studies of luminescent Cu(I) heteroleptic complexes based on dipyridylamine. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 318, 97-103.	3.9	12
69	Efficient and tunable phosphorescence of new platinum(II) complexes based on the donor–π–acceptor Schiff bases. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 316, 12-18.	3.9	17
70	Design and synthesis of binuclear Co-salen catalysts for the hydrolytic kinetic resolution of epoxides. Catalysis Communications, 2015, 68, 101-104.	3.3	3
71	Luminescent monomeric and polymeric cuprous halide complexes with 1,2-bis(3,5-dimethylpyrazol-1-ylmethyl)-benzene as ligand. Inorganic Chemistry Communication, 2015, 58, 113-116.	3.9	9
72	Synthesis, DNA photocleavage, singlet oxygen photogeneration and two photon absorption properties of ruthenium-phenanthroline porphyrins. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1046-1052.	0.8	17

Feng-Shou Wu

#	Article	IF	CITATIONS
73	Photocytotoxicity, cellular uptake and subcellular localization of amidinophenylporphyrins as potential photodynamic therapeutic agents: An in vitro cell study. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4513-4517.	2.2	28
74	Phosphorescent Cu(<scp>i</scp>) complexes based on bis(pyrazol-1-yl-methyl)-pyridine derivatives for organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 138-146.	5 . 5	51
75	A white phosphorescent coordination polymer with Cu ₂ 1 ₂ alternating units linked by benzo-18-crown-6. Dalton Transactions, 2014, 43, 12463-12466.	3.3	45