
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1644189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature, 1988, 334, 262-264.	27.8	426
2	Regulation of abscisic acid-induced transcription. , 1998, 37, 425-435.		425
3	Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant Journal, 2002, 30, 679-689.	5.7	266
4	Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports, 2007, 26, 2017-2026.	5.6	245
5	Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters, 2001, 498, 187-189.	2.8	207
6	Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant Journal, 1997, 11, 1285-1295.	5.7	133
7	Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9879-9884.	7.1	126
8	MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant Journal, 2010, 63, 1017-1030.	5.7	117
9	Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant Journal, 1998, 13, 691-697.	5.7	109
10	Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Molecular Genetics and Genomics, 1993, 238, 409-418.	2.4	105
11	A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize. Plant Cell, 2015, 27, 3245-3259.	6.6	104
12	Plant proteins containing the RNA-recognition motif. Trends in Plant Science, 1998, 3, 15-21.	8.8	102
13	Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Science, 2007, 172, 20-28.	3.6	102
14	A novel higher plant protein tyrosine phosphatase interacts with SNF1â€related protein kinases via a KIS (kinase interaction sequence) domain. Plant Journal, 2002, 29, 705-715.	5.7	84
15	Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Molecular Genetics and Genomics, 1991, 230, 394-400.	2.4	82
16	Differential regulation of ABA-induced 23?25 kDa proteins in embryo and vegetative tissues of the viviparous mutants of maize. Plant Molecular Biology, 1989, 13, 385-394.	3.9	80
17	Domain fusion between SNF1â€related kinase subunits during plant evolution. EMBO Reports, 2001, 2, 55-60.	4.5	80
18	Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiology and Biochemistry, 1999, 37, 327-340.	5.8	78

#	Article	IF	CITATIONS
19	Insights into Maize LEA Proteins: From Proteomics to Functional Approaches. Plant and Cell Physiology, 2012, 53, 312-329.	3.1	76
20	Gene Expression in Developing Zea mays Embryos: Regulation by Abscisic Acid of a Highly Phosphorylated 23- to 25-kD Group of Proteins. Plant Physiology, 1988, 88, 564-569.	4.8	70
21	Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. Journal of Plant Physiology, 2013, 170, 864-873.	3.5	70
22	Regulation of Gene Expression in Developing Zea mays Embryos. Plant Physiology, 1986, 82, 543-549.	4.8	69
23	Isolation and Functional Characterisation of Two New bZIP Maize Regulators of the ABA Responsive Gene rab28. Plant Molecular Biology, 2005, 58, 899-914.	3.9	66
24	Regulation of the maizerab17 gene promoter in transgenic heterologous systems. Plant Molecular Biology, 1991, 17, 985-993.	3.9	61
25	Towards the identification of late-embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS. Proteomics, 2006, 6, S175-S185.	2.2	54
26	Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein fromZea mays. Plant Journal, 2004, 38, 875-886.	5.7	53
27	Casein Kinase 2 Negatively Regulates Abscisic Acid-Activated SnRK2s in the Core Abscisic Acid-Signaling Module. Molecular Plant, 2015, 8, 709-721.	8.3	53
28	Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D) — A wider perspective of the proteome. Journal of Proteomics, 2010, 73, 1707-1721.	2.4	48
29	Maize protein kinase CK2: regulation and functionality of three β regulatory subunits. Plant Journal, 2001, 25, 365-374.	5.7	46
30	Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses. Plant Journal, 2006, 46, 747-757.	5.7	44
31	Arabidopsis thaliana atrab28: a nuclear targeted protein related to germination and toxic cation tolecular Biology, 2002, 50, 249-259.	3.9	42
32	Expression and cellular localization of rab28 mRNA and Rab28 protein during maize embryogenesis. Plant Journal, 1996, 9, 549-557.	5.7	39
33	The maize RNA-binding protein, MA16, is a nucleolar protein located in the dense fibrillar component. Plant Journal, 1994, 6, 825-834.	5.7	35
34	Drought tolerance acquisition in Eucalyptus globulus (Labill.): A research on plant morphology, physiology and proteomics. Journal of Proteomics, 2013, 79, 263-276.	2.4	35
35	Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays. Plant Molecular Biology, 1999, 40, 199-211.	3.9	33
36	Drought signal transduction in plants. Plant Growth Regulation, 1996, 20, 105-110.	3.4	32

#	Article	IF	CITATIONS
37	Effect of Abscisic Acid on the Linoleic Acid Metabolism in Developing Maize Embryos. Plant Physiology, 1991, 95, 1277-1283.	4.8	31
38	Functional characteristics of the maize RNA-binding protein MA16. Plant Molecular Biology, 1995, 29, 797-807.	3.9	31
39	The Maize OST1 Kinase Homolog Phosphorylates and Regulates the Maize SNAC1-Type Transcription Factor. PLoS ONE, 2013, 8, e58105.	2.5	30
40	Distinctive features of plant protein kinase CK2. Molecular and Cellular Biochemistry, 2001, 227, 119-127.	3.1	29
41	Emerging roles of protein kinase CK2 in abscisic acid signaling. Frontiers in Plant Science, 2015, 6, 966.	3.6	23
42	Molecular characterization of L2 lipoxygenase from maize embryos. Plant Molecular Biology, 1997, 33, 605-614.	3.9	22
43	Microextraction of Nuclear Proteins from Single Maize Embryos. Plant Molecular Biology Reporter, 1997, 15, 371-376.	1.8	22
44	Expression of a Maize Cell Wall Hydroxyproline-Rich Glycoprotein Gene in Early Leaf and Root Vascular Differentiation. Plant Cell, 1990, 2, 785.	6.6	21
45	Lipoxygenases from Zea mays L. Purification and physicochemical characteristics. Lipids and Lipid Metabolism, 1990, 1045, 107-114.	2.6	21
46	Maize AKINÎ ² Î ³ dimerizes through the KIS/CBM domain and assembles into SnRK1 complexes. FEBS Letters, 2009, 583, 1887-1894.	2.8	21
47	Protein analysis during almond embryo development. Identification and characterization of a late embryogenesis abundant protein. Plant Physiology and Biochemistry, 2000, 38, 449-457.	5.8	20
48	Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli. Protein Expression and Purification, 2003, 29, 24-32.	1.3	19
49	Constitutive protein-DNA interactions on the abscisic acid-responsive element before and after developmental activation of the rab28 gene. Plant Molecular Biology, 1999, 41, 529-536.	3.9	18
50	Novel clues on abiotic stress tolerance emerge from embryo proteome analyses of rice varieties with contrasting stress adaptation. Proteomics, 2011, 11, 2389-2405.	2.2	16
51	Expression and cellular localization of Atrab28 during arabidopsis embryogenesis. Plant Molecular Biology, 1999, 40, 355-363.	3.9	14
52	Regulation of MAPK signaling and cell death by MAPK phosphatase MKP2. Plant Signaling and Behavior, 2010, 5, 1497-1500.	2.4	14
53	Absence of storage protein synthesis in the embryo of Zea mays. Plant Science, 1987, 53, 215-221.	3.6	11
54	Role of Plant-Specific N-Terminal Domain of Maize CK2β1 Subunit in CK2β Functions and Holoenzyme Regulation. PLoS ONE, 2011, 6, e21909.	2.5	9

#	Article	IF	CITATIONS
55	Specific characteristics of CK2β regulatory subunits in plants. Molecular and Cellular Biochemistry, 2011, 356, 255-260.	3.1	7
56	In vivo footprinting of plant tissues. Plant Molecular Biology Reporter, 2002, 20, 287-297.	1.8	6
57	Combination of 2DE and LC for Plant Proteomics Analysis. Methods in Molecular Biology, 2014, 1072, 131-140.	0.9	5
58	Novel CK2α and CK2β subunits in maize reveal functional diversification in subcellular localization and interaction capacity. Plant Science, 2015, 235, 58-69.	3.6	5
59	Molecular characterization of maize bHLH transcription factor (ZmKS), a new ZmOST1 kinase substrate. Plant Science, 2016, 253, 1-12.	3.6	3
60	Size and distribution of polyadenylic acid sequences in Drosophila polytene DNA and RNA. Nucleic Acids and Protein Synthesis, 1977, 479, 235-245.	1.7	2
61	A PCR-based method to identify plant protein-associated RNAs. Plant Physiology and Biochemistry, 1998, 36, 913-918.	5.8	Ο