Xiongming Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1644188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study for seedling biomass-related traits in Gossypium arboreum L BMC Plant Biology, 2022, 22, 54.	1.6	5
2	Phenotypic Correlation Analysis in F2 Segregating Populations of Gossypiumhirsutum and Gossypiumarboreum for Boll-Related Traits. Agronomy, 2022, 12, 330.	1.3	1
3	Deltapine 15 contributes to the genomic architecture of modern upland cotton cultivars. Theoretical and Applied Genetics, 2022, , 1.	1.8	4
4	Introgression from <i>Gossypium hirsutum</i> is a driver for population divergence and genetic diversity in <i>Gossypium barbadense</i> . Plant Journal, 2022, 110, 764-780.	2.8	16
5	Identification and Characterization of the Growth-Regulating Factors-Interacting Factors in Cotton. Frontiers in Genetics, 2022, 13, 851343.	1.1	1
6	Integrating Genome-wide association and whole transcriptome analysis to reveal genetic control of leaf traits in Gossypium arboreum L Genomics, 2022, 114, 110331.	1.3	2
7	A genome-wide association study of lateral root number for Asian cotton (Gossypium arboreum L.). Journal of Cotton Research, 2022, 5, .	1.0	2
8	Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology, 2022, 22, .	1.6	12
9	Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Industrial Crops and Products, 2021, 159, 113028.	2.5	9
10	A copy number variant at the <i>HPDAâ€Ð12</i> locus confers compact plant architecture in cotton. New Phytologist, 2021, 229, 2091-2103.	3.5	27
11	QTL mapping of agronomic and economic traits for four F2 populations of upland cotton. Journal of Cotton Research, 2021, 4, .	1.0	9
12	Largeâ€fragment insertion activates gene <i>GaFZ</i> (<i>Ga08C0121</i>) and is associated with the fuzz and trichome reduction in cotton (<i>Gossypium arboreum</i>). Plant Biotechnology Journal, 2021, 19, 1110-1124.	4.1	17
13	Correlation analysis of stem hardness traits with fiber and yield-related traits in core collections of Gossypium hirsutum. Journal of Cotton Research, 2021, 4, .	1.0	1
14	Genome-wide association and transcriptome analysis of root color-related genes in Gossypium arboreum L Planta, 2021, 253, 95.	1.6	8
15	The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nature Genetics, 2021, 53, 916-924.	9.4	75
16	GWAS Mediated Elucidation of Heterosis for Metric Traits in Cotton (Gossypium hirsutum L.) Across Multiple Environments. Frontiers in Plant Science, 2021, 12, 565552.	1.7	16
17	Genomic insight into the divergence and adaptive potential of a forgotten landrace G.Âhirsutum L. purpurascens. Journal of Genetics and Genomics, 2021, 48, 473-484.	1.7	19
18	Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). International Journal of Biological Macromolecules, 2021, 182, 1507-1527.	3.6	11

XIONGMING DU

#	Article	IF	CITATIONS
19	Identification and functional analysis of 9-cis-epoxy carotenoid dioxygenase (NCED) homologs in G. hirsutum. International Journal of Biological Macromolecules, 2021, 182, 298-310.	3.6	15
20	Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum). Scientific Reports, 2021, 11, 15935.	1.6	5
21	Identification of C2H2 subfamily ZAT genes in Gossypium species reveals GhZAT34 and GhZAT79 enhanced salt tolerance in Arabidopsis and cotton. International Journal of Biological Macromolecules, 2021, 184, 967-980.	3.6	18
22	Genome wide analysis of IQD gene family in diploid and tetraploid species of cotton (Gossypium spp.). International Journal of Biological Macromolecules, 2021, 184, 1035-1061.	3.6	7
23	Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy, 2021, 11, 1825.	1.3	29
24	Genome-wide profiling of circular RNAs in the hybridization of two elite inbred lines of Gossypium hirsutum. Industrial Crops and Products, 2021, 170, 113754.	2.5	5
25	Insight into abscisic acid perception and signaling to increase plant tolerance to abiotic stress. Journal of Plant Interactions, 2021, 16, 222-237.	1.0	21
26	GhGASA10–1 promotes the cell elongation in fiber development through the phytohormones IAA-induced. BMC Plant Biology, 2021, 21, 448.	1.6	10
27	Intra-Plant Variability for Heat Tolerance Related Attributes in Upland Cotton. Agronomy, 2021, 11, 2375.	1.3	3
28	ldentification of Raf-Like Kinases B Subfamily Genes in Gossypium Species Revealed GhRAF42 Enhanced Salt Tolerance in Cotton. International Journal of Molecular Sciences, 2021, 22, 12649.	1.8	3
29	CottonGVD: A Comprehensive Genomic Variation Database for Cultivated Cottons. Frontiers in Plant Science, 2021, 12, 803736.	1.7	8
30	Genetic Factors Underlying Single Fiber Quality in A-Genome Donor Asian Cotton (Gossypium) Tj ETQq0 0 0 rg	gBT /Qverloc	k 10 Tf 50 30
31	Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance. Cells, 2020, 9, 105.	1.8	189
32	Genomeâ€wide dissection of hybridization for fiber quality―and yieldâ€related traits in upland cotton. Plant Journal, 2020, 104, 1285-1300.	2.8	9
33	Genome-wide identification and characterization of HSP70 gene family in four species of cotton. Genomics, 2020, 112, 4442-4453.	1.3	12
34	Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate. Agronomy, 2020, 10, 1190.	1.3	13
35	Extensive haplotypes are associated with population differentiation and environmental adaptability in Upland cotton (Gossypium hirsutum). Theoretical and Applied Genetics, 2020, 133, 3273-3285.	1.8	15

³⁶Casparian strip membrane domain proteins in Gossypium arboreum: genome-wide identification and
negative regulation of lateral root growth. BMC Genomics, 2020, 21, 340.1.24

XIONGMING DU

#	Article	IF	CITATIONS
37	Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton. Plants, 2020, 9, 711.	1.6	18
38	Genotyping by Sequencing Revealed QTL Hotspots for Trichome-Based Plant Defense in Gossypium hirsutum. Genes, 2020, 11, 368.	1.0	10
39	Introgression Leads to Genomic Divergence and Responsible for Important Traits in Upland Cotton. Frontiers in Plant Science, 2020, 11, 929.	1.7	15
40	Expression patterns and functional divergence of homologous genes accompanied by polyploidization in cotton (Gossypium hirsutum L.). Science China Life Sciences, 2020, 63, 1565-1579.	2.3	11
41	Highâ€density genetic variation maps reveal the correlation between asymmetric interspecific introgressions and improvement of agronomic traits in Upland and Pima cotton varieties developed in Xinjiang, China. Plant Journal, 2020, 103, 677-689.	2.8	22
42	A Genome-Wide Association Study Revealed Key SNPs/Genes Associated With Salinity Stress Tolerance In Upland Cotton. Genes, 2019, 10, 829.	1.0	28
43	Long non-coding RNAs and their potential functions in Ligon-lintless-1 mutant cotton during fiber development. BMC Genomics, 2019, 20, 661.	1.2	18
44	Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC Plant Biology, 2019, 19, 400.	1.6	27
45	Association Analysis of Salt Tolerance in Asiatic cotton (Gossypium arboretum) with SNP Markers. International Journal of Molecular Sciences, 2019, 20, 2168.	1.8	28
46	Identifying favorable alleles for improving key agronomic traits in upland cotton. BMC Plant Biology, 2019, 19, 138.	1.6	6
47	Identification and characterization analysis of sulfotransferases (SOTs) gene family in cotton (Gossypium) and its involvement in fiber development. BMC Plant Biology, 2019, 19, 595.	1.6	11
48	Comparative effect of allopolyploidy on transposable element composition and gene expression between <i>Gossypium hirsutum</i> and its two diploid progenitors. Journal of Integrative Plant Biology, 2019, 61, 45-59.	4.1	11
49	Genomic divergence in cotton germplasm related to maturity and heterosis. Journal of Integrative Plant Biology, 2019, 61, 929-942.	4.1	21
50	A Phi-Class Glutathione S-Transferase Gene for Verticillium Wilt Resistance in Gossypium arboreum Identified in a Genome-Wide Association Study. Plant and Cell Physiology, 2018, 59, 275-289.	1.5	87
51	Integration of conventional and advanced molecular tools to track footprints of heterosis in cotton. BMC Genomics, 2018, 19, 776.	1.2	14
52	QTL Mapping of Fiber Quality and Yield-Related Traits in an Intra-Specific Upland Cotton Using Genotype by Sequencing (GBS). International Journal of Molecular Sciences, 2018, 19, 441.	1.8	37
53	Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biology, 2018, 18, 128.	1.6	42
54	Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genomics, 2018, 19, 451.	1.2	22

XIONGMING DU

#	Article	IF	CITATIONS
55	Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 2018, 50, 796-802.	9.4	401
56	Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics, 2018, 50, 803-813.	9.4	368
57	Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biology, 2017, 18, 33.	3.8	128
58	Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton. Biologia (Poland), 2017, 72, 43-52.	0.8	3
59	Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49, 1089-1098.	9.4	384
60	Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
61	iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. Frontiers in Plant Science, 2017, 8, 2113.	1.7	31
62	High-Density Linkage Map Construction and Mapping of Salt-Tolerant QTLs at Seedling Stage in Upland Cotton Using Genotyping by Sequencing (GBS). International Journal of Molecular Sciences, 2017, 18, 2622.	1.8	42
63	To Be a Flower or Fruiting Branch: Insights Revealed by mRNA and Small RNA Transcriptomes from Different Cotton Developmental Stages. Scientific Reports, 2016, 6, 23212.	1.6	21
64	Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Scientific Reports, 2016, 6, 34548.	1.6	88
65	Characterization, Expression, and Functional Analysis of a Novel NAC Gene Associated with Resistance to Verticillium Wilt and Abiotic Stress in Cotton. G3: Genes, Genomes, Genetics, 2016, 6, 3951-3961.	0.8	32
66	Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. BMC Genetics, 2016, 17, 129.	2.7	104
67	Genome sequence of cultivated Upland cotton (GossypiumÂhirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33, 524-530.	9.4	1,064
68	The Hairless Stem Phenotype of Cotton (<i>Gossypium barbadense</i>) Is Linked to a <i>Copia</i> -Like Retrotransposon Insertion in a <i>Homeodomain-Leucine Zipper</i> Gene (<i>HD1</i>). Genetics, 2015, 201, 143-154.	1.2	33
69	Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics, 2014, 15, 760.	1.2	166
70	Association Mapping for Epistasis and Environmental Interaction of Yield Traits in 323 Cotton Cultivars under 9 Different Environments. PLoS ONE, 2014, 9, e95882.	1.1	55
71	Reforming Cotton Genes: From Elucidation of DNA Structure to Genome Editing. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 0, , .	0.8	1
72	Genetic Diversity and Association Analysis of Lint Percentage Variation Population in Gossypium Hirsutum L. Based on Microsatellite Markers. Journal of Natural Fibers, 0, , 1-10.	1.7	1

#	Article	IF	CITATIONS
73	Cotton Germplasm Resources in China. , 0, , .		6