Justin P Annes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1644095/publications.pdf Version: 2024-02-01

LUSTIN D ANNES

#	Article	IF	CITATIONS
1	SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Reports, 2022, 38, 110453.	6.4	16
2	Novel Pathogenic De Novo <i>INS</i> p.T97P Variant Presenting With Severe Neonatal DKA. Endocrinology, 2022, 163, .	2.8	2
3	β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes. Diabetes, 2022, 71, 1439-1453.	0.6	8
4	Probability of positive genetic testing in patients diagnosed with pheochromocytoma and paraganglioma: Criteria beyond a family history. Surgery, 2021, 169, 298-301.	1.9	1
5	Intracardiac paragangliomas: surgical approach and perioperative management. General Thoracic and Cardiovascular Surgery, 2021, 69, 555-559.	0.9	2
6	Protocol for determining zinc-dependent β cell-selective small-molecule delivery in mouse pancreas. STAR Protocols, 2021, 2, 100263.	1.2	1
7	A Wireless Implantable Potentiostat for Programmable Electrochemical Drug Delivery. , 2021, , .		1
8	Generation of highly potent DYRK1A-dependent inducers of human β-Cell replication via Multi-Dimensional compound optimization. Bioorganic and Medicinal Chemistry, 2020, 28, 115193.	3.0	16
9	PAM staining intensity of primary neuroendocrine neoplasms is a potential prognostic biomarker. Scientific Reports, 2020, 10, 10943.	3.3	5
10	Zinc-Chelating Small Molecules Preferentially Accumulate and Function within Pancreatic β Cells. Cell Chemical Biology, 2019, 26, 213-222.e6.	5.2	20
11	CC-401 Promotes Î ² -Cell Replication via Pleiotropic Consequences of DYRK1A/B Inhibition. Endocrinology, 2018, 159, 3143-3157.	2.8	48
12	Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. Journal of Biological Chemistry, 2018, 293, 567-578.	3.4	38
13	Genetic Disruption of Adenosine Kinase in Mouse Pancreatic β-Cells Protects Against High-Fat Diet–Induced Glucose Intolerance. Diabetes, 2017, 66, 1928-1938.	0.6	16
14	Electrically controlled release of insulin using polypyrrole nanoparticles. Nanoscale, 2017, 9, 143-149.	5.6	67
15	A High-content In Vitro Pancreatic Islet β-cell Replication Discovery Platform. Journal of Visualized Experiments, 2016, , .	0.3	5
16	Repurposing cAMP-Modulating Medications to Promote β-Cell Replication. Molecular Endocrinology, 2014, 28, 1682-1697.	3.7	31
17	Adult tissue sources for new Î ² cells. Translational Research, 2014, 163, 418-431.	5.0	11
18	A liver Hif-2α–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nature Medicine, 2013, 19, 1331-1337.	30.7	90

JUSTIN P ANNES

#	Article	IF	CITATIONS
19	The influence of sodium- and calcium-regulatory hormone interventions on adipocytokines in obesity and diabetes. Metabolism: Clinical and Experimental, 2013, 62, 539-547.	3.4	11
20	Genetics of adrenocortical disease. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 159-167.	2.3	7
21	Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3915-3920.	7.1	120
22	In Vivo Screening for Secreted Proteins That Modulate Glucose Handling Identifies Interleukin-6 Family Members as Potent Hypoglycemic Agents. PLoS ONE, 2012, 7, e44600.	2.5	2
23	Erdheim-Chester disease presenting with cutaneous involvement: a case report and literature review. Journal of Cutaneous Pathology, 2011, 38, 280-285.	1.3	34
24	Risks of Presymptomatic Direct-to-Consumer Genetic Testing. New England Journal of Medicine, 2010, 363, 1100-1101.	27.0	47
25	Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. Journal of Cell Biology, 2004, 165, 723-734.	5.2	438
26	Annexin II-mediated plasmin generation activates TGF-β3 during epithelial–mesenchymal transformation in the developing avian heart. Developmental Biology, 2004, 265, 140-154.	2.0	17
27	Making sense of latent TGFÎ ² activation. Journal of Cell Science, 2003, 116, 217-224.	2.0	1,462
28	The integrin $\hat{I} \pm V \hat{I}^2 6$ binds and activates latent TGF $\hat{I}^2 3$. FEBS Letters, 2002, 511, 65-68.	2.8	146
29	Latent TGF-β binding protein-3 (LTBP-3) requires binding to TGF-β for secretion. FEBS Letters, 2002, 517, 277-280.	2.8	44
30	PKC-Î, is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature, 2000, 404, 402-407.	27.8	847
31	The Latent Transforming Growth Factor-β–binding Protein-1 Promotes In Vitro Differentiation of Embryonic Stem Cells into Endothelium. Molecular Biology of the Cell, 2000, 11, 4295-4308.	2.1	72