Justin P Annes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1644095/publications.pdf

Version: 2024-02-01

516710 454955 3,625 31 16 30 citations h-index g-index papers 31 31 31 5247 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Making sense of latent $TGF\hat{I}^2$ activation. Journal of Cell Science, 2003, 116, 217-224.	2.0	1,462
2	PKC-Î, is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature, 2000, 404, 402-407.	27.8	847
3	Integrin $\hat{l}\pm V\hat{l}^2$ 6-mediated activation of latent TGF- \hat{l}^2 requires the latent TGF- \hat{l}^2 binding protein-1. Journal of Cell Biology, 2004, 165, 723-734.	5.2	438
4	The integrin αVβ6binds and activates latent TGFβ3. FEBS Letters, 2002, 511, 65-68.	2.8	146
5	Adenosine kinase inhibition selectively promotes rodent and porcine islet \hat{l}^2 -cell replication. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3915-3920.	7.1	120
6	A liver Hif-2α–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nature Medicine, 2013, 19, 1331-1337.	30.7	90
7	The Latent Transforming Growth Factor-β–binding Protein-1 Promotes In Vitro Differentiation of Embryonic Stem Cells into Endothelium. Molecular Biology of the Cell, 2000, 11, 4295-4308.	2.1	72
8	Electrically controlled release of insulin using polypyrrole nanoparticles. Nanoscale, 2017, 9, 143-149.	5.6	67
9	CC-401 Promotes \hat{I}^2 -Cell Replication via Pleiotropic Consequences of DYRK1A/B Inhibition. Endocrinology, 2018, 159, 3143-3157.	2.8	48
10	Risks of Presymptomatic Direct-to-Consumer Genetic Testing. New England Journal of Medicine, 2010, 363, 1100-1101.	27.0	47
11	Latent TGF-Î ² binding protein-3 (LTBP-3) requires binding to TGF-Î ² for secretion. FEBS Letters, 2002, 517, 277-280.	2.8	44
12	Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. Journal of Biological Chemistry, 2018, 293, 567-578.	3.4	38
13	Erdheim-Chester disease presenting with cutaneous involvement: a case report and literature review. Journal of Cutaneous Pathology, 2011, 38, 280-285.	1.3	34
14	Repurposing cAMP-Modulating Medications to Promote \hat{l}^2 -Cell Replication. Molecular Endocrinology, 2014, 28, 1682-1697.	3.7	31
15	Zinc-Chelating Small Molecules Preferentially Accumulate and Function within Pancreatic \hat{l}^2 Cells. Cell Chemical Biology, 2019, 26, 213-222.e6.	5.2	20
16	Annexin II-mediated plasmin generation activates TGF-β3 during epithelial–mesenchymal transformation in the developing avian heart. Developmental Biology, 2004, 265, 140-154.	2.0	17
17	Genetic Disruption of Adenosine Kinase in Mouse Pancreatic β-Cells Protects Against High-Fat Diet–Induced Glucose Intolerance. Diabetes, 2017, 66, 1928-1938.	0.6	16
18	Generation of highly potent DYRK1A-dependent inducers of human \hat{I}^2 -Cell replication via Multi-Dimensional compound optimization. Bioorganic and Medicinal Chemistry, 2020, 28, 115193.	3.0	16

#	Article	IF	CITATIONS
19	SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Reports, 2022, 38, 110453.	6.4	16
20	The influence of sodium- and calcium-regulatory hormone interventions on adipocytokines in obesity and diabetes. Metabolism: Clinical and Experimental, 2013, 62, 539-547.	3.4	11
21	Adult tissue sources for new \hat{l}^2 cells. Translational Research, 2014, 163, 418-431.	5. O	11
22	î ² -Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes. Diabetes, 2022, 71, 1439-1453.	0.6	8
23	Genetics of adrenocortical disease. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 159-167.	2.3	7
24	A High-content In Vitro Pancreatic Islet β-cell Replication Discovery Platform. Journal of Visualized Experiments, 2016, , .	0.3	5
25	PAM staining intensity of primary neuroendocrine neoplasms is a potential prognostic biomarker. Scientific Reports, 2020, 10, 10943.	3.3	5
26	In Vivo Screening for Secreted Proteins That Modulate Glucose Handling Identifies Interleukin-6 Family Members as Potent Hypoglycemic Agents. PLoS ONE, 2012, 7, e44600.	2.5	2
27	Intracardiac paragangliomas: surgical approach and perioperative management. General Thoracic and Cardiovascular Surgery, 2021, 69, 555-559.	0.9	2
28	Novel Pathogenic De Novo <i>INS</i> p.T97P Variant Presenting With Severe Neonatal DKA. Endocrinology, 2022, 163, .	2.8	2
29	Probability of positive genetic testing in patients diagnosed with pheochromocytoma and paraganglioma: Criteria beyond a family history. Surgery, 2021, 169, 298-301.	1.9	1
30	Protocol for determining zinc-dependent \hat{l}^2 cell-selective small-molecule delivery in mouse pancreas. STAR Protocols, 2021, 2, 100263.	1.2	1
31	A Wireless Implantable Potentiostat for Programmable Electrochemical Drug Delivery. , 2021, , .		1