
Martin Oudega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1643852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Schwann Cell But Not Olfactory Ensheathing Glia Transplants Improve Hindlimb Locomotor Performance in the Moderately Contused Adult Rat Thoracic Spinal Cord. Journal of Neuroscience, 2002, 22, 6670-6681.	3.6	446
2	Degenerative and Spontaneous Regenerative Processes after Spinal Cord Injury. Journal of Neurotrauma, 2006, 23, 263-280.	3.4	271
3	Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. Journal of Neural Engineering, 2009, 6, 016001.	3.5	254
4	Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. Journal of Physiology, 2001, 533, 83-89.	2.9	220
5	Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers. Biomaterials, 2011, 32, 6068-6079.	11.4	219
6	Schwann Cell Transplantation for Repair of the Adult Spinal Cord. Journal of Neurotrauma, 2006, 23, 453-467.	3.4	208
7	Delayed Transplantation of Olfactory Ensheathing Glia Promotes Sparing/Regeneration of Supraspinal Axons in the Contused Adult Rat Spinal Cord. Journal of Neurotrauma, 2003, 20, 1-16.	3.4	199
8	Nerve Growth Factor Promotes Regeneration of Sensory Axons into Adult Rat Spinal Cord. Experimental Neurology, 1996, 140, 218-229.	4.1	178
9	Freeze-dried poly(d,l-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials, 2004, 25, 1569-1582.	11.4	176
10	Axonal regeneration into Schwann cell grafts within resorbable $poly(\hat{l}\pm-hydroxyacid)$ guidance channels in the adult rat spinal cord. Biomaterials, 2001, 22, 1125-1136.	11.4	168
11	Corticospinal reorganization after spinal cord injury. Journal of Physiology, 2012, 590, 3647-3663.	2.9	147
12	Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord. Brain Research, 1999, 818, 431-438.	2.2	138
13	Poly (d,l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials, 2006, 27, 430-442.	11.4	128
14	Poly(?-hydroxyacids) for application in the spinal cord: Resorbability and biocompatibility with adult rat Schwann cells and spinal cord. , 1998, 42, 642-654.		102
15	Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell and Tissue Research, 2012, 349, 269-288.	2.9	97
16	Bone Marrow Stromal Cells for Repair of the Spinal Cord: Towards Clinical Application. Cell Transplantation, 2006, 15, 563-577.	2.5	96
17	The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials, 2020, 245, 119978.	11.4	95
18	Distribution of corticospinal motor neurons in the postnatal rat: Quantitative evidence for massive collateral elimination and modest cell death. Journal of Comparative Neurology, 1994, 347, 115-126.	1.6	91

MARTIN OUDEGA

#	Article	IF	CITATIONS
19	A combination of insulin-like growth factor-I and platelet-derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord. , 1997, 19, 247-258.		78
20	Neurotrophins Reduce Degeneration of Injured Ascending Sensory and Corticospinal Motor Axons in Adult Rat Spinal Cord. Experimental Neurology, 2002, 175, 282-296.	4.1	78
21	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75
22	Basic Fibroblast Growth Factor Promotes Neuronal Survival but Not Behavioral Recovery in the Transected and Schwann Cell Implanted Rat Thoracic Spinal Cord. Journal of Neurotrauma, 2004, 21, 1415-1430.	3.4	72
23	Biomaterials for spinal cord repair. Neuroscience Bulletin, 2013, 29, 445-459.	2.9	70
24	Bone Marrow Stromal Cells Elicit Tissue Sparing after Acute but Not Delayed Transplantation into the Contused Adult Rat Thoracic Spinal Cord. Journal of Neurotrauma, 2009, 26, 2313-2322.	3.4	62
25	Biomaterials for revascularization and immunomodulation after spinal cord injury. Biomedical Materials (Bristol), 2018, 13, 044105.	3.3	58
26	Bone Marrow Stromal Cell-Mediated Tissue Sparing Enhances Functional Repair after Spinal Cord Contusion in Adult Rats. Cell Transplantation, 2012, 21, 1561-1575.	2.5	56
27	Extracellular matrix components as therapeutics for spinal cord injury. Neuroscience Letters, 2017, 652, 50-55.	2.1	53
28	Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury — How much is enough?. Experimental Neurology, 2013, 248, 30-44.	4.1	52
29	The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials, 2014, 35, 1924-1931.	11.4	52
30	The Role of Brain-Derived Neurotrophic Factor in Bone Marrow Stromal Cell-Mediated Spinal Cord Repair. Cell Transplantation, 2015, 24, 2209-2220.	2.5	39
31	Mesenchymal Stem Cell-Macrophage Choreography Supporting Spinal Cord Repair. Neurotherapeutics, 2018, 15, 578-587.	4.4	34
32	Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Experimental Neurology, 2019, 312, 51-62.	4.1	33
33	Deoxyribozyme-mediated knockdown of xylosyltransferase-1 mRNA promotes axon growth in the adult rat spinal cord. Brain, 2008, 131, 2596-2605.	7.6	32
34	Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia. Experimental Neurology, 2021, 335, 113483.	4.1	27
35	Biocompatibility of a coacervate-based controlled release system for protein delivery to the injured spinal cord. Acta Biomaterialia, 2015, 11, 204-211.	8.3	21
36	Temporal Profile of Endogenous Anatomical Repair and Functional Recovery following Spinal Cord Injury in Adult Zebrafish. PLoS ONE, 2014, 9, e105857.	2.5	19

MARTIN OUDEGA

#	Article	IF	CITATIONS
37	Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury. Experimental Neurology, 2021, 342, 113722.	4.1	17
38	Laminin polymer treatment accelerates repair of the crushed peripheral nerve in adult rats. Acta Biomaterialia, 2019, 86, 185-193.	8.3	16
39	Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord. NeuroReport, 2010, 21, 221-226.	1.2	15
40	Inflammatory response after spinal cord injury. Experimental Neurology, 2013, 250, 151-155.	4.1	14
41	Diagnostic accuracy of evoked potentials for functional impairment after contusive spinal cord injury in adult rats. Journal of Clinical Neuroscience, 2016, 25, 122-126.	1.5	13
42	Neurotrophins BDNF and NTâ€3 promote axonal reâ€entry into the distal host spinal cord through Schwann cellâ€seeded miniâ€channels. European Journal of Neuroscience, 2001, 13, 257-268.	2.6	11
43	Tissue engineering of the nervous system. , 2008, , 611-647.		11
44	The Effect of Inflammatory Priming on the Therapeutic Potential of Mesenchymal Stromal Cells for Spinal Cord Repair. Cells, 2021, 10, 1316.	4.1	10
45	Systemic administration of a deoxyribozyme to xylosyltransferase-1 mRNA promotes recovery after a spinal cord contusion injury. Experimental Neurology, 2012, 237, 170-179.	4.1	9
46	Characterization of a novel primary culture system of adult zebrafish brainstem cells. Journal of Neuroscience Methods, 2014, 223, 11-19.	2.5	9
47	Macrophage-Derived Inflammation Induces a Transcriptome Makeover in Mesenchymal Stromal Cells Enhancing Their Potential for Tissue Repair. International Journal of Molecular Sciences, 2021, 22, 781.	4.1	8
48	Poly(αâ€hydroxyacids) for application in the spinal cord: Resorbability and biocompatibility with adult rat Schwann cells and spinal cord. Journal of Biomedical Materials Research Part B, 1998, 42, 642-654.	3.1	8
49	Bone Marrow-derived Mesenchymal Stem Cell Transplant Survival in the Injured Rodent Spinal Cord. Journal of Bone Marrow Research, 2014, 02, .	0.2	8
50	The Effects of the Combination of Mesenchymal Stromal Cells and Nanofiber-Hydrogel Composite on Repair of the Contused Spinal Cord. Cells, 2022, 11, 1137.	4.1	7
51	Spinal cord repair strategies: Schwann cells, neurotrophic factors, and biodegradable polymers. Biomedical Reviews, 2014, 10, 75.	0.6	4
52	Soluble laminin polymers enhance axon growth of primary neurons <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2018, 106, 2372-2381.	4.0	3
53	Biomaterials and immunomodulation for spinal cord repair. , 2021, , 119-138.		Ο