Matthew F Traxler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1643725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological drivers of division of labour in Streptomyces. Current Opinion in Microbiology, 2022, 67, 102148.	2.3	9
2	Harnessing Rare Actinomycete Interactions and Intrinsic Antimicrobial Resistance Enables Discovery of an Unusual Metabolic Inhibitor. MBio, 2022, 13, .	1.8	4
3	Genetic Network Architecture and Environmental Cues Drive Spatial Organization of Phenotypic Division of Labor in Streptomyces coelicolor. MBio, 2021, 12, .	1.8	20
4	Multiple lineages of Streptomyces produce antimicrobials within passalid beetle galleries across eastern North America. ELife, 2021, 10, .	2.8	11
5	Pyrolyzed Substrates Induce Aromatic Compound Metabolism in the Post-fire Fungus, Pyronema domesticum. Frontiers in Microbiology, 2021, 12, 729289.	1.5	20
6	The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions. MSystems, 2021, 6, e0028121.	1.7	1
7	Prodiginines Postpone the Onset of Sporulation in Streptomyces coelicolor. Antibiotics, 2020, 9, 847.	1.5	8
8	Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. MBio, 2020, 11, .	1.8	27
9	Inducible Antibacterial Activity in the Bacillales by Triphenyl Tetrazolium Chloride. Scientific Reports, 2020, 10, 5563.	1.6	3
10	High Spatial Resolution Imaging Mass Spectrometry Reveals Chemical Heterogeneity Across Bacterial Microcolonies. Analytical Chemistry, 2019, 91, 14818-14823.	3.2	18
11	In Search of Model Ecological Systems for Understanding Specialized Metabolism. MSystems, 2018, 3, .	1.7	10
12	Production of Prodiginines Is Part of a Programmed Cell Death Process in Streptomyces coelicolor. Frontiers in Microbiology, 2018, 9, 1742.	1.5	47
13	Role for dithiolopyrrolones in disrupting bacterial metal homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2717-2722.	3.3	73
14	Exploring new horizons. ELife, 2017, 6, .	2.8	0
15	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
16	Molecules to Ecosystems: Actinomycete Natural Products In situ. Frontiers in Microbiology, 2016, 7, 2149.	1.5	71
17	Natural products in soil microbe interactions and evolution. Natural Product Reports, 2015, 32, 956-970.	5.2	172
18	Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics, 2014, 6, 1390-1399.	1.0	36

MATTHEW F TRAXLER

#	Article	IF	CITATIONS
19	Interspecies Interactions Stimulate Diversification of the Streptomyces coelicolor Secreted Metabolome. MBio, 2013, 4, .	1.8	307
20	Old Meets New: Using Interspecies Interactions to Detect Secondary Metabolite Production in Actinomycetes. Methods in Enzymology, 2012, 517, 89-109.	0.4	41
21	A massively spectacular view of the chemical lives of microbes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10128-10129.	3.3	28
22	Interspecies modulation of bacterial development through iron competition and siderophore piracy. Molecular Microbiology, 2012, 86, 628-644.	1.2	148
23	Structure and Biosynthesis of Amychelin, an Unusual Mixed-Ligand Siderophore from <i>Amycolatopsis sp.</i> AA4. Journal of the American Chemical Society, 2011, 133, 11434-11437.	6.6	103
24	Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the â€~feast to famine' gradient in <i>Escherichia coli</i> . Molecular Microbiology, 2011, 79, 830-845.	1.2	118
25	Antibiotics as Signal Molecules. Chemical Reviews, 2011, 111, 5492-5505.	23.0	348
26	The global, ppGppâ€mediated stringent response to amino acid starvation in <i>Escherichia coli</i> . Molecular Microbiology, 2008, 68, 1128-1148.	1.2	478
27	Guanosine 3′,5′-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie inEscherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2374-2379.	3.3	110