Lisa M Housel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1643229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures. Nano Letters, 2019, 19, 8255-8261.	9.1	104
2	Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO ₂ batteries. Energy and Environmental Science, 2020, 13, 4322-4333.	30.8	72
3	Evaporationâ€Induced Vertical Alignment Enabling Directional Ion Transport in a 2Dâ€Nanosheetâ€Based Battery Electrode. Advanced Materials, 2020, 32, e1907941.	21.0	66
4	Investigation of α-MnO ₂ Tunneled Structures as Model Cation Hosts for Energy Storage. Accounts of Chemical Research, 2018, 51, 575-582.	15.6	64
5	Carbon Nanotube Web with Carboxylated Polythiophene "Assist―for High-Performance Battery Electrodes. ACS Nano, 2018, 12, 3126-3139.	14.6	51
6	Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective. ACS Central Science, 2016, 2, 380-387.	11.3	39
7	New Insights into the Reaction Mechanism of Sodium Vanadate for an Aqueous Zn Ion Battery. Chemistry of Materials, 2020, 32, 2053-2060.	6.7	37
8	Systems-level investigation of aqueous batteries for understanding the benefit of water-in-salt electrolyte by synchrotron nanoimaging. Science Advances, 2020, 6, eaay7129.	10.3	35
9	Understanding aggregation hindered Li-ion transport in transition metal oxide at mesoscale. Energy Storage Materials, 2019, 19, 439-445.	18.0	32
10	Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries. ACS Energy Letters, 2019, 4, 271-275.	17.4	32
11	Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry. ACS Applied Materials & Interfaces, 2019, 11, 37567-37577.	8.0	28
12	Discharging Behavior of Hollandite α-MnO ₂ in a Hydrated Zinc-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 59937-59949.	8.0	28
13	Toward the Understanding of the Reaction Mechanism of Zn/MnO ₂ Batteries Using Non-alkaline Aqueous Electrolytes. Chemistry of Materials, 2021, 33, 7283-7289.	6.7	27
14	Defect Control in the Synthesis of 2 D MoS ₂ Nanosheets: Polysulfide Trapping in Composite Sulfur Cathodes for Li–S Batteries. ChemSusChem, 2020, 13, 1517-1528.	6.8	26
15	Deliberate Modification of Fe ₃ O ₄ Anode Surface Chemistry: Impact on Electrochemistry. ACS Applied Materials & Amp; Interfaces, 2019, 11, 19920-19932.	8.0	12
16	Lithium vanadium oxide (Li _{1.1} V ₃ O ₈) thick porous electrodes with high rate capacity: utilization and evolution upon extended cycling elucidated <i>via operando</i> energy dispersive X-ray diffraction and continuum simulation. Physical Chemistry Chemical Physics, 2021, 23, 139-150.	2.8	10
17	Impact of sodium vanadium oxide (NaV ₃ O ₈ , NVO) material synthesis conditions on charge storage mechanism in Zn-ion aqueous batteries. Physical Chemistry Chemical Physics, 2021, 23, 8607-8617.	2.8	10
18	Capacity Retention for (De)lithiation of Silver Containing α-MnO ₂ : Impact of Structural Distortion and Transition Metal Dissolution. Journal of the Electrochemical Society, 2018, 165, A2849-A2858.	2.9	9

LISA M HOUSEL

#	Article	IF	CITATIONS
19	The Systematic Refinement for the Phase Change and Conversion Reactions Arising from the Lithiation of Magnetite Nanocrystals. Advanced Functional Materials, 2020, 30, 1907337.	14.9	8
20	Probing Kinetics of Water-in-Salt Aqueous Batteries with Thick Porous Electrodes. ACS Central Science, 2021, 7, 1676-1687.	11.3	8
21	Interfacial Reactivity of Silicon Electrodes: Impact of Electrolyte Solvent and Presence of Conductive Carbon. ACS Applied Materials & amp; Interfaces, 2022, 14, 20404-20417.	8.0	8
22	Thermodynamic Analysis of LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ (NMC622) Voltage Hysteresis Induced through High Voltage Charge. ACS Applied Energy Materials, 2021, 4, 12067-12073.	5.1	6
23	Investigation of Conductivity and Ionic Transport of VO ₂ (M) and VO ₂ (R) via Electrochemical Study. Chemistry of Materials, 2018, 30, 7535-7544.	6.7	5
24	High capacity vanadium oxide electrodes: effective recycling through thermal treatment. Sustainable Energy and Fuels, 2019, 3, 2615-2626.	4.9	4
25	Active Material Interfacial Chemistry and Its Impact on Composite Magnetite Electrodes. ACS Applied Energy Materials, 2021, 4, 9836-9847.	5.1	4
26	Local and Bulk Probe of Vanadium-Substituted α-Manganese Oxide (α-K <i>_x</i> V <i>_y</i> Mn _{8–<i>y</i>} O ₁₆) Lithium Electrochemistry. Inorganic Chemistry, 2021, 60, 10398-10414.	4.0	3
27	Surface Electrolyte Interphase Control on Magnetite, Fe3O4, Electrodes: Impact on Electrochemistry. MRS Advances, 2018, 3, 581-586.	0.9	2
28	Potassium-Containing α-MnO ₂ Nanotubes: The Impact of Hollow Regions on Electrochemistry. Journal of the Electrochemical Society, 2021, 168, 090559.	2.9	2
29	Probing the Physicochemical Behavior of Variously Doped Li ₄ Ti ₅ O ₁₂ Nanoflowers. ACS Physical Chemistry Au, 2022, 2, 331-345.	4.0	2
30	Operando bulk and interfacial characterization for electrochemical energy storage: Case study employing isothermal microcalorimetry and X-ray absorption spectroscopy. Journal of Materials Research, 0, , 1.	2.6	1
31	X-ray fluorescence mapping: Insights into mesoscale structure impact on battery functional electrochemistry. MRS Advances, 2022, 7, 361-365.	0.9	1
32	(Energy Technology Division Graduate Student Award sponsored by Bio-Logic) Understanding Charge Transport for Current and Future Electrochemical Energy Storage Technologies. ECS Meeting Abstracts, 2021, MA2021-01, 13-13.	0.0	0
33	Structural Investigation of Silver Vanadium Phosphorus Oxide (Ag2VO2PO4) and Its Reduction Products. Chemistry of Materials, 2021, 33, 4425-4434.	6.7	0
34	(Energy Technology Division Graduate Student Award Address sponsored by Bio-Logic) Understanding Charge Transport for Current and Future Electrochemical Energy Storage Technologies. ECS Meeting Abstracts, 2020, MA2020-01, 58-58.	0.0	0
35	Systems-Level Investigation of Aqueous Batteries for Understanding the Benefit of Water-in-Salt Electrolyte By Synchrotron Nano-Imaging. ECS Meeting Abstracts, 2020, MA2020-02, 852-852.	0.0	0