Ari Venäläinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1643202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences, 2021, 18, 5053-5083.	1.3	59
2	The utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland. Annals of Forest Science, 2020, 77, 1.	0.8	4
3	Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Global Change Biology, 2020, 26, 4178-4196.	4.2	123
4	Preparing for peat production seasons in Finland and experimenting with long range impact forecasting. Climate Services, 2019, 14, 37-50.	1.0	3
5	Projected Changes in European and North Atlantic Seasonal Wind Climate Derived from CMIP5 Simulations. Journal of Climate, 2019, 32, 6467-6490.	1.2	26
6	The 10-Year Return Levels of Maximum Wind Speeds under Frozen and Unfrozen Soil Forest Conditions in Finland. Climate, 2019, 7, 62.	1.2	21
7	Projected decrease in wintertime bearing capacity on different forest and soil types in Finland under a warming climate. Hydrology and Earth System Sciences, 2019, 23, 1611-1631.	1.9	17
8	Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics, 2018, 50, 1177-1192.	1.7	137
9	Effects of CMIP5 Projections on Volume Growth, Carbon Stock and Timber Yield in Managed Scots Pine, Norway Spruce and Silver Birch Stands under Southern and Northern Boreal Conditions. Forests, 2018, 9, 208.	0.9	7
10	Recent meteorological and marine studies to support nuclear power plant safety in Finland. Energy, 2018, 165, 1102-1118.	4.5	9
11	Temporal and Spatial Change in Diameter Growth of Boreal Scots Pine, Norway Spruce, and Birch under Recent-Generation (CMIP5) Global Climate Model Projections for the 21st Century. Forests, 2018, 9, 118.	0.9	38
12	Effects of forest management and harvesting intensity on the timber supply from Finnish forests in a changing climate. Canadian Journal of Forest Research, 2018, 48, 1124-1134.	0.8	15
13	Features of Tajikistan's past and future climate. International Journal of Climatology, 2017, 37, 4949-4961.	1.5	12
14	Homogenization and trend analysis of monthly mean and maximum wind speed time series in Finland, 1959–2015. International Journal of Climatology, 2017, 37, 4803-4813.	1.5	34
15	Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications. Earth System Dynamics, 2017, 8, 529-545.	2.7	17
16	Risk of large-scale fires in boreal forests of Finland under changing climate. Natural Hazards and Earth System Sciences, 2016, 16, 239-253.	1.5	46
17	Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. Natural Hazards and Earth System Sciences, 2016, 16, 2259-2271.	1.5	41
18	Projections for the duration and degree days of the thermal growing season in Europe derived from <scp>CMIP5</scp> model output. International Journal of Climatology, 2016, 36, 3039-3055.	1.5	70

ARI VENÃĐÃ PNEN

#	Article	IF	CITATIONS
19	Analysis of the meteorological capacity for early warnings in Malawi and Zambia. Climate and Development, 2016, 8, 190-196.	2.2	13
20	The verification of seasonal precipitation forecasts for early warning in Zambia and Malawi. Advances in Science and Research, 2015, 12, 31-36.	1.0	5
21	Temporal variations and change in forest fire danger in Europe for 1960–2012. Natural Hazards and Earth System Sciences, 2014, 14, 1477-1490.	1.5	66
22	Statistical downscaling of a climate simulation of the last glacial cycle: temperature and precipitation over Northern Europe. Climate of the Past, 2014, 10, 1489-1500.	1.3	5
23	Assessment of forest fire danger in a boreal forest environment: description and evaluation of the operational system applied in <scp>F</scp> inland. Meteorological Applications, 2014, 21, 879-887.	0.9	28
24	Potential for extreme loss in high-latitude Earth surface processes due to climate change. Geophysical Research Letters, 2014, 41, 3914-3924.	1.5	25
25	Production of the Finnish Wind Atlas. Wind Energy, 2013, 16, 19-35.	1.9	57
26	Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theoretical and Applied Climatology, 2013, 112, 99-111.	1.3	145
27	Effects of cambial age, clone and climatic factors on ring width and ring density in Norway spruce (Picea abies) in southeastern Finland. Forest Ecology and Management, 2012, 263, 9-16.	1.4	22
28	The Effect of Scale, Climate and Environment on Species Richness and Spatial Distribution of Finnish Birds. Annales Zoologici Fennici, 2011, 48, 257-274.	0.2	5
29	Boreal and subarctic soils under climatic change. Global and Planetary Change, 2011, 79, 37-47.	1.6	42
30	Effects of spacing and genetic entry on radial growth and ring density development in Scots pine (Pinus sylvestris L.). Annals of Forest Science, 2011, 68, 1233-1243.	0.8	8
31	Combined occurrence of wind, snow loading and soil frost with implications for risks to forestry in Finland under the current and changing climatic conditions. Silva Fennica, 2011, 45, .	0.5	36
32	Impacts of climate change on the risk of snow-induced forest damage in Finland. Climatic Change, 2010, 99, 193-209.	1.7	26
33	Climate change impacts on forest fire potential in boreal conditions in Finland. Climatic Change, 2010, 103, 383-398.	1.7	34
34	Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology, 2010, 30, 2247-2256.	1.5	99
35	Comparing regional risks in producing turnip rape and oilseed rape – Today in light of long-term datasets. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2009, 59, 118-128.	0.3	9
36	Climate impact on suicide rates in Finland from 1971 to 2003. International Journal of Biometeorology, 2009, 53, 167-175.	1.3	59

ARI VENÃ**P**Â**P**NEN

#	Article	IF	CITATIONS
37	Effects of water temperature on year-class strengths and growth patterns of pikeperch (Sander) Tj ETQq1 1 0.784	-314 rgBT 0.7	/Qyerlock
38	Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 2008, 52, 251-259.	1.3	73
39	Effect of mild winter events on soil water content beneath snowpack. Cold Regions Science and Technology, 2008, 51, 56-67.	1.6	49
40	Temporal and spatial occurrence of strong winds and large snow load amounts in Finland during 1961-2000. Silva Fennica, 2008, 42, .	0.5	18
41	Dielectric constant time stability of glacial till at a clear-cut site. Geoderma, 2007, 141, 311-319.	2.3	19
42	Moisture dynamics of moss-dominated surface fuel in relation to the structure of Picea abies and Pinus sylvestris stands. Forest Ecology and Management, 2006, 226, 189-198.	1.4	31
43	Simulations of the influence of clear-cutting on the risk of wind damage on a regional scale over a 20-year period. Canadian Journal of Forest Research, 2006, 36, 2247-2258.	0.8	30
44	The use of numerical weather forecast model predictions as a source of data for irrigation modelling. Meteorological Applications, 2005, 12, 307.	0.9	14
45	Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland. Canadian Journal of Forest Research, 2005, 35, 410-420.	0.8	65
46	Influence of clear-cutting on the risk of wind damage at forest edges. Forest Ecology and Management, 2004, 203, 77-88.	1.4	60
47	Simulations of the influence of forest management on wind climate on a regional scale. Agricultural and Forest Meteorology, 2004, 123, 149-158.	1.9	29
48	The influence of natural conditions on the spatial variation of climate in Lapland, northern Finland. International Journal of Climatology, 2003, 23, 1011-1022.	1.5	37
49	Estimation of winter road maintenance costs using climate data. Meteorological Applications, 2003, 10, 69-73.	0.9	15
50	Meteorological data for agricultural applications. Physics and Chemistry of the Earth, 2002, 27, 1045-1050.	1.2	67
51	Estimation of road salt use based on winter air temperature. Meteorological Applications, 2001, 8, 333-338.	0.9	10
52	The Influence of Climate Warming on Soil Frost on Snow-Free Surfaces in Finland. Climatic Change, 2001, 50, 111-128.	1.7	28
53	Estimation of Surface Solar Clobal Radiation from NOAA AVHRR Data in High Latitudes. Journal of Applied Meteorology and Climatology, 1999, 38, 1706-1719.	1.7	20
54	Latent Heat Flux from Small Sheltered Lakes. Boundary-Layer Meteorology, 1998, 86, 355-377.	1.2	24

#	Article	IF	CITATIONS
55	THE SPATIAL VARIATION OF LONG-TERM MEAN GLOBAL RADIATION IN FINLAND. International Journal of Climatology, 1997, 17, 415-426.	1.5	24
56	Communicating the amount of windstorm induced forest damage by the maximum wind gust speed in Finland. Advances in Science and Research, 0, 16, 31-37.	1.0	20
57	Bias-adjusted seasonal forecasts of soil moisture for forestry applications in Finland. Advances in Science and Research, 0, 17, 23-27.	1.0	3