
Jian-Xin Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1643196/publications.pdf Version: 2024-02-01

IIAN-XIN XIE

#	Article	IF	CITATIONS
1	Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy. Journal of Materials Science and Technology, 2022, 98, 33-43.	10.7	47
2	Simultaneous enhancement of mechanical and electrical properties of Cu–Ni–Si alloys via thermo-mechanical process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142815.	5.6	17
3	Recent progress in the machine learning-assisted rational design of alloys. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 635-644.	4.9	16
4	Dynamic recrystallization behavior and microstructure evolution of high-performance Cu–3.28Ni–0.6Si–0.22Zn–0.11Cr–0.04P during hot compression. Rare Metals, 2021, 40, 156-167.	7.1	7
5	Cross-sectional structure, microstructure and mechanical property evolutions of brass cladding pure copper stranded wire composite during drawing. Transactions of Nonferrous Metals Society of China, 2020, 30, 1857-1872.	4.2	7
6	Dramatically Enhanced Combination of Ultimate Tensile Strength and Electric Conductivity of Alloys via Machine Learning Screening. Acta Materialia, 2020, 200, 803-810.	7.9	109
7	A property-oriented design strategy for high performance copper alloys via machine learning. Npj Computational Materials, 2019, 5, .	8.7	104
8	Two-Way Shape Memory Effect Induced by Tensile Deformation in Columnar-Grained Cu71.7Al18.1Mn10.2 Alloy. Materials, 2018, 11, 2109.	2.9	11
9	Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 641-651.	4.9	10
10	Microstructure and superelasticity control by rolling and heat treatment in columnar-grained Cu-Al-Mn shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 315-322.	5.6	29
11	Effect of continuous induction annealing on the microstructure and mechanical properties of copper-clad aluminum flat bars. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 1427-1436.	4.9	2
12	Effects of Fe content on the microstructure and properties of CuNi10FeMn1 alloy tubes fabricated by HCCM horizontal continuous casting. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 449-457.	4.9	8
13	Effect of compression direction on the dynamic recrystallization behavior of continuous columnar-grained CuNi10Fe1Mn alloy. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 851-859.	4.9	8
14	Improved cold rolling workability of warm rolled Fe-6.5wt%Si electrical steel with columnar grains by annealing. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 1171-1182.	4.9	5
15	Superelastic anisotropy characteristics of columnar-grained Cu–Al–Mn shape memory alloys and its potential applications. Materials and Design, 2015, 85, 211-220.	7.0	68
16	Structure design of high-performance Cu-based shape memory alloys. Rare Metals, 2015, 34, 607-624.	7.1	44
17	Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 687-695.	4.9	10
18	The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys. Materials & Design, 2014, 64, 427-433.	5.1	78

JIAN-XIN XIE

#	Article	IF	CITATIONS
19	Stress-induced phase transformation characteristics and its effect on the enhanced ductility in continuous columnar-grained polycrystalline Cu–12wt%Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 103-111.	5.6	10
20	Numerical simulation of temperature field in horizontal core-filling continuous casting for copper cladding aluminum rods. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 684-692.	4.9	18
21	Liquid-solid interface control of BFe10-1-1 cupronickel alloy tubes during HCCM horizontal continuous casting and its effect on the microstructure and properties. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 748-758.	4.9	12
22	Mesh Reconstruction Technology of Welding Process in 3D FEM Simulation of Porthole Extrusion and Its Application. Procedia Engineering, 2012, 36, 253-260.	1.2	5
23	The Investigation of Fabrication Processing for Lotus-type Porous Magnesium by the In-situ Reaction and Unidirectional Solidification Method. Procedia Engineering, 2012, 36, 270-278.	1.2	5
24	Microstructure and mechanical properties of BFe10 cupronickel alloy tubes fabricated by a horizontal continuous casting with heating-cooling combined mold technology. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 339-347.	4.9	8
25	Rectifying control of wire diameter during dieless drawing by a deformation measuring method of interframe displacement. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 615-621.	4.9	6
26	Texture evolution and flow stress of columnar-grained polycrystalline copper during intense plastic deformation process at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 418-425.	5.6	30
27	Enhanced room-temperature tensile ductility of columnar-grained polycrystalline Cu–12wt.%Al alloy through texture control by Ohno continuous casting process. Materials Letters, 2011, 65, 1123-1126.	2.6	19
28	Effects of solidification parameters on microstructure and mechanical properties of continuous columnar-grained Cu–Al–Ni alloy. Progress in Natural Science: Materials International, 2011, 21, 368-374.	4.4	24
29	Processing limit maps for the stable deformation of dieless drawing. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 330-337.	4.9	8
30	Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 4088-4099.	2.2	42
31	Effects of Processing Parameters on the Fabrication of Copper Cladding Aluminum Rods by Horizontal Core-Filling Continuous Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 104-113.	2.1	32
32	FEM analysis of metal flowing behaviors in porthole die extrusion based on the mesh reconstruction technology of the welding process. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 763-769.	4.9	3
33	A fractal-based model for the microstructure evolution of silicon bronze wires fabricated by dieless drawing. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 770-776.	4.9	1
34	Fabrication of W–Cu functionally graded materials with high density by particle size adjustment and solid state hot press. Composites Science and Technology, 2008, 68, 1539-1547.	7.8	43