Kevin Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1642729/publications.pdf Version: 2024-02-01

KEVIN ROSSI

#	Article	IF	CITATIONS
1	Realistic Modelling of Dynamics at Nanostructured Interfaces Relevant to Heterogeneous Catalysis. Catalysts, 2022, 12, 52.	1.6	0
2	Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO ₂ Reduction Reaction. Accounts of Chemical Research, 2022, 55, 629-637.	7.6	38
3	Colloidal-ALD-Grown Hybrid Shells Nucleate via a Ligand–Precursor Complex. Journal of the American Chemical Society, 2022, 144, 3998-4008.	6.6	12
4	Well-Defined Copper-Based Nanocatalysts for Selective Electrochemical Reduction of CO ₂ to C ₂ Products. ACS Energy Letters, 2022, 7, 1284-1291.	8.8	63
5	Exploring the robust extrapolation of high-dimensional machine learning potentials. Physical Review B, 2022, 105, .	1.1	17
6	Born to be different: the formation process of Cu nanoparticles tunes the size trend of the activity for CO2 to CH4 conversion. Nanoscale, 2021, 13, 5857-5867.	2.8	10
7	A universal signature in the melting of metallic nanoparticles. Nanoscale, 2021, 13, 1172-1180.	2.8	23
8	Uncertainty estimation for molecular dynamics and sampling. Journal of Chemical Physics, 2021, 154, 074102.	1.2	48
9	Compact atomic descriptors enable accurate predictions via linear models. Journal of Chemical Physics, 2021, 154, 224112.	1.2	16
10	Elucidating the structure-dependent selectivity of CuZn towards methane and ethanol in CO ₂ electroreduction using tailored Cu/ZnO precatalysts. Chemical Science, 2021, 12, 14484-14493.	3.7	37
11	Data-driven simulation and characterisation of gold nanoparticle melting. Nature Communications, 2021, 12, 6056.	5.8	29
12	Representations and descriptors unifying the study of molecular and bulk systems. International Journal of Quantum Chemistry, 2020, 120, e26151.	1.0	8
13	Nanoalloys for Energy Applications. , 2020, , 347-380.		3
14	Simulating Solvation and Acidity in Complex Mixtures with First-Principles Accuracy: The Case of CH ₃ SO ₃ H and H ₂ O ₂ in Phenol. Journal of Chemical Theory and Computation, 2020, 16, 5139-5149.	2.3	26
15	Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction. ACS Catalysis, 2020, 10, 3911-3920.	5.5	26
16	Correlating Oxygen Reduction Reaction Activity and Structural Rearrangements in MgOâ€ S upported Platinum Nanoparticles. ChemPhysChem, 2019, 20, 3037-3044.	1.0	6
17	On machine learning force fields for metallic nanoparticles. Advances in Physics: X, 2019, 4, 1654919.	1.5	20
18	A genomic characterisation of monometallic nanoparticles. Physical Chemistry Chemical Physics, 2019, 21, 4888-4898.	1.3	25

Kevin Rossi

#	Article	IF	CITATIONS
19	The effect of size and composition on structural transitions in monometallic nanoparticles. European Physical Journal B, 2018, 91, 1.	0.6	20
20	Building machine learning force fields for nanoclusters. Journal of Chemical Physics, 2018, 148, 241739.	1.2	42
21	Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution. Journal of Chemical Physics, 2017, 146, 145102.	1.2	10
22	The effect of chemical ordering and lattice mismatch on structural transitions in phase segregating nanoalloys. Physical Chemistry Chemical Physics, 2017, 19, 11057-11063.	1.3	16
23	Controlling Structural Transitions in AuAg Nanoparticles through Precise Compositional Design. Journal of Physical Chemistry Letters, 2016, 7, 4414-4419.	2.1	15
24	Accelerating the theoretical study of Liâ€polysulfide adsorption on singleâ€atom catalysts via machine learning approaches. International Journal of Quantum Chemistry, 0, , .	1.0	0