Xuping Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/16423/publications.pdf Version: 2024-02-01

XUDING SUN

#	Article	IF	CITATIONS
1	Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. Journal of the American Chemical Society, 2014, 136, 7587-7590.	6.6	2,208
2	Recent Progress in Cobaltâ€Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced Materials, 2016, 28, 215-230.	11.1	2,083
3	Hydrothermal Treatment of Grass: A Low ost, Green Route to Nitrogenâ€Đoped, Carbonâ€Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Labelâ€Free Detection of Cu(II) Ions. Advanced Materials, 2012, 24, 2037-2041.	11.1	1,345
4	NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9351-9355.	7.2	1,242
5	Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Analytical Chemistry, 2012, 84, 5351-5357.	3.2	986
6	Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Nonâ€Nobleâ€Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 6710-6714.	7.2	939
7	Feâ€Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1602441.	11.1	834
8	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie - International Edition, 2014, 53, 12855-12859.	7.2	816
9	Selfâ€Supported Cu ₃ P Nanowire Arrays as an Integrated Highâ€Performance Threeâ€Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie - International Edition, 2014, 53, 9577-9581.	7.2	784
10	Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water. Advanced Materials, 2014, 26, 5702-5707.	11.1	783
11	Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS ₂ Catalyst: Theoretical and Experimental Studies. Advanced Materials, 2018, 30, e1800191.	11.1	697
12	Energy‣aving Electrolytic Hydrogen Generation: Ni ₂ P Nanoarray as a Highâ€Performance Nonâ€Nobleâ€Metal Electrocatalyst. Angewandte Chemie - International Edition, 2017, 56, 842-846.	7.2	668
13	Ternary Fe _{<i>x</i>} Co _{1–<i>x</i>} P Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity: Experimental and Theoretical Insight. Nano Letters, 2016, 16, 6617-6621.	4.5	618
14	High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nature Communications, 2018, 9, 3485.	5.8	615
15	Enhanced Electrocatalysis for Energyâ€Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials, 2017, 7, 1700020.	10.2	519
16	Phosphorus-Doped Co ₃ O ₄ Nanowire Array: A Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Catalysis, 2018, 8, 2236-2241.	5.5	517
17	Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants. ACS Applied Materials & Interfaces, 2013, 5, 6815-6819.	4.0	493
18	Boosted Electrocatalytic N ₂ Reduction to NH ₃ by Defectâ€Rich MoS ₂ Nanoflower. Advanced Energy Materials, 2018, 8, 1801357.	10.2	482

#	Article	IF	CITATIONS
19	Mn Doping of CoP Nanosheets Array: An Efficient Electrocatalyst for Hydrogen Evolution Reaction with Enhanced Activity at All pH Values. ACS Catalysis, 2017, 7, 98-102.	5.5	461
20	Ultrathin Graphitic Carbon Nitride Nanosheet: A Highly Efficient Fluorosensor for Rapid, Ultrasensitive Detection of Cu ²⁺ . Analytical Chemistry, 2013, 85, 5595-5599.	3.2	448
21	Self-Supported FeP Nanorod Arrays: A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity. ACS Catalysis, 2014, 4, 4065-4069.	5.5	419
22	NiP ₂ nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6, 13440-13445.	2.8	400
23	NiCo ₂ S ₄ nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale, 2015, 7, 15122-15126.	2.8	390
24	Greatly Improving Electrochemical N ₂ Reduction over TiO ₂ Nanoparticles by Iron Doping. Angewandte Chemie - International Edition, 2019, 58, 18449-18453.	7.2	379
25	Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection. Macromolecules, 2010, 43, 10078-10083.	2.2	370
26	Electrodeposited Co-doped NiSe ₂ nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale, 2016, 8, 3911-3915.	2.8	367
27	Highâ€Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angewandte Chemie - International Edition, 2017, 56, 1064-1068.	7.2	348
28	Self‧tanding CoP Nanosheets Array: A Threeâ€Dimensional Bifunctional Catalyst Electrode for Overall Water Splitting in both Neutral and Alkaline Media. ChemElectroChem, 2017, 4, 1840-1845.	1.7	345
29	Mo ₂ C Nanoparticles Decorated Graphitic Carbon Sheets: Biopolymer-Derived Solid-State Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Generation. ACS Catalysis, 2014, 4, 2658-2661.	5.5	343
30	An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chemical Communications, 2015, 51, 16683-16686.	2.2	336
31	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	8.2	331
32	Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale, 2013, 5, 8921.	2.8	321
33	A Zn-doped Ni ₃ S ₂ nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chemical Communications, 2017, 53, 12446-12449.	2.2	315
34	A Mn-doped Ni ₂ P nanosheet array: an efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chemical Communications, 2017, 53, 11048-11051.	2.2	309
35	A Fe-doped Ni ₃ S ₂ particle film as a high-efficiency robust oxygen evolution electrode with very high current density. Journal of Materials Chemistry A, 2015, 3, 23207-23212.	5.2	308
36	Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale, 2013, 5, 11604.	2.8	300

#	Article	IF	CITATIONS
37	A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon, 2011, 49, 3158-3164.	5.4	299
38	High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. Journal of Materials Chemistry A, 2017, 5, 3208-3213.	5.2	295
39	Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 19729-19745.	5.2	295
40	Co(OH) ₂ Nanoparticleâ€Encapsulating Conductive Nanowires Array: Roomâ€Temperature Electrochemical Preparation for Highâ€Performance Water Oxidation Electrocatalysis. Advanced Materials, 2018, 30, 1705366.	11,1	294
41	In Situ Derived CoB Nanoarray: A Highâ€Efficiency and Durable 3D Bifunctional Electrocatalyst for Overall Alkaline Water Splitting. Small, 2017, 13, 1700805.	5.2	293
42	MoO ₃ nanosheets for efficient electrocatalytic N ₂ fixation to NH ₃ . Journal of Materials Chemistry A, 2018, 6, 12974-12977.	5.2	292
43	High-Performance N ₂ -to-NH ₃ Conversion Electrocatalyzed by Mo ₂ C Nanorod. ACS Central Science, 2019, 5, 116-121.	5.3	292
44	Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators B: Chemical, 2018, 255, 1254-1261.	4.0	287
45	Electrochemical N ₂ fixation to NH ₃ under ambient conditions: Mo ₂ N nanorod as a highly efficient and selective catalyst. Chemical Communications, 2018, 54, 8474-8477.	2.2	287
46	CoP Nanosheet Arrays Supported on a Ti Plate: An Efficient Cathode for Electrochemical Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4326-4329.	3.2	285
47	Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chemical Communications, 2011, 47, 961-963.	2.2	284
48	High-Performance Electrohydrogenation of N ₂ to NH ₃ Catalyzed by Multishelled Hollow Cr ₂ O ₃ Microspheres under Ambient Conditions. ACS Catalysis, 2018, 8, 8540-8544.	5.5	280
49	Tungsten Phosphide Nanorod Arrays Directly Grown on Carbon Cloth: A Highly Efficient and Stable Hydrogen Evolution Cathode at All pH Values. ACS Applied Materials & Interfaces, 2014, 6, 21874-21879.	4.0	279
50	Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of Organicâ^'Inorganic Hybrid Materials at Room Temperature. Journal of the American Chemical Society, 2005, 127, 13102-13103.	6.6	278
51	Identifying the Origin of Ti ³⁺ Activity toward Enhanced Electrocatalytic N ₂ Reduction over TiO ₂ Nanoparticles Modulated by Mixedâ€Valent Copper. Advanced Materials, 2020, 32, e2000299.	11.1	278
52	Ni ₂ P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale, 2014, 6, 11031-11034.	2.8	277
53	Co-Doped CuO Nanoarray: An Efficient Oxygen Evolution Reaction Electrocatalyst with Enhanced Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 2883-2887.	3.2	277
54	One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H ₂ O ₂ , and glucose sensing. RSC Advances, 2012, 2, 538-545.	1.7	274

#	Article	IF	CITATIONS
55	Biomolecule-Assisted, Environmentally Friendly, One-Pot Synthesis of CuS/Reduced Graphene Oxide Nanocomposites with Enhanced Photocatalytic Performance. Langmuir, 2012, 28, 12893-12900.	1.6	269
56	Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale, 2017, 9, 4793-4800.	2.8	268
57	Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sensors and Actuators B: Chemical, 2019, 278, 126-132.	4.0	256
58	Boron Nanosheet: An Elemental Two-Dimensional (2D) Material for Ambient Electrocatalytic N ₂ -to-NH ₃ Fixation in Neutral Media. ACS Catalysis, 2019, 9, 4609-4615.	5.5	253
59	Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743.	1.8	245
60	Large-Scale Synthesis of Micrometer-Scale Single-Crystalline Au Plates of Nanometer Thickness by a Wet-Chemical Route. Angewandte Chemie - International Edition, 2004, 43, 6360-6363.	7.2	239
61	In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catalysis Science and Technology, 2011, 1, 1142.	2.1	239
62	Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film. ACS Applied Materials & Interfaces, 2016, 8, 4718-4723.	4.0	239
63	Ag nanosheets for efficient electrocatalytic N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2018, 54, 11427-11430.	2.2	238
64	Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Research, 2018, 11, 988-996.	5.8	236
65	Three-Dimensional Porous Supramolecular Architecture from Ultrathin g-C ₃ N ₄ Nanosheets and Reduced Graphene Oxide: Solution Self-Assembly Construction and Application as a Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & amp: Interfaces, 2014, 6, 1011-1017.	4.0	235
66	Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chemical Communications, 2020, 56, 14553-14569.	2.2	235
67	Ultrathin Graphitic C ₃ N ₄ Nanosheets/Graphene Composites: Efficient Organic Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2014, 7, 2125-2130.	3.6	232
68	High-Efficiency Electrochemical Hydrogen Evolution Catalyzed by Tungsten Phosphide Submicroparticles. ACS Catalysis, 2015, 5, 145-149.	5.5	231
69	Ti ₃ C ₂ T _x (TÂ= F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N ₂ to NH ₃ . Journal of Materials Chemistry A, 2018, 6, 24031-24035.	5.2	231
70	Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosensors and Bioelectronics, 2011, 26, 4791-4797.	5.3	227
71	CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 14634.	5.2	227
72	Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sensors and Actuators B: Chemical, 2013, 184, 156-162.	4.0	226

#	Article	IF	CITATIONS
73	Aqueous electrocatalytic N ₂ reduction for ambient NH ₃ synthesis: recent advances in catalyst development and performance improvement. Journal of Materials Chemistry A, 2020, 8, 1545-1556.	5.2	226
74	A porous Ni ₃ N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorganic Chemistry Frontiers, 2017, 4, 1120-1124.	3.0	225
75	Enabling Effective Electrocatalytic N ₂ Conversion to NH ₃ by the TiO ₂ Nanosheets Array under Ambient Conditions. ACS Applied Materials & Interfaces, 2018, 10, 28251-28255.	4.0	222
76	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 10583-10587.	7.2	219
77	Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. Journal of Materials Chemistry A, 2015, 3, 20056-20059.	5.2	218
78	Cobalt Phosphide Nanowires: Efficient Nanostructures for Fluorescence Sensing of Biomolecules and Photocatalytic Evolution of Dihydrogen from Water under Visible Light. Angewandte Chemie - International Edition, 2015, 54, 5493-5497.	7.2	216
79	Selective phosphidation: an effective strategy toward CoP/CeO ₂ interface engineering for superior alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 1985-1990.	5.2	212
80	Ni3S2 coated ZnO array for high-performance supercapacitors. Journal of Power Sources, 2014, 245, 463-467.	4.0	210
81	Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 2015, 60, 92-96.	2.3	210
82	Efficient Electrochemical N ₂ Reduction to NH ₃ on MoN Nanosheets Array under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9550-9554.	3.2	210
83	Three-Dimensional Ni ₂ P Nanoarray: An Efficient Catalyst Electrode for Sensitive and Selective Nonenzymatic Glucose Sensing with High Specificity. Analytical Chemistry, 2016, 88, 7885-7889.	3.2	209
84	Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. Small, 2019, 15, e1805103.	5.2	206
85	A self-standing nanoporous MoP ₂ nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 7169-7173.	5.2	204
86	MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86, 161-165.	2.3	202
87	A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H ₂ 0 ₂ and glucose. RSC Advances, 2012, 2, 411-413.	1.7	201
88	Ambient N ₂ fixation to NH ₃ electrocatalyzed by a spinel Fe ₃ O ₄ nanorod. Nanoscale, 2018, 10, 14386-14389.	2.8	199
89	An ultrafine platinum–cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale, 2018, 10, 12302-12307.	2.8	199
90	Fabrication of hierarchical CoP nanosheet@microwire arrays <i>via</i> space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions. Nanoscale, 2018, 10, 7941-7945.	2.8	197

#	Article	IF	CITATIONS
91	In situ formation of a 3D core/shell structured Ni ₃ N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. Journal of Materials Chemistry A, 2017, 5, 7806-7810.	5.2	196
92	Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced graphene oxide nanocomposites for glucose detection. Catalysis Science and Technology, 2013, 3, 1027.	2.1	193
93	Fe-Doped Ni ₂ P Nanosheet Array for High-Efficiency Electrochemical Water Oxidation. Inorganic Chemistry, 2017, 56, 1041-1044.	1.9	193
94	P-Doped Ag Nanoparticles Embedded in N-Doped Carbon Nanoflake: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 4499-4503.	3.2	193
95	A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chemical Communications, 2018, 54, 10499-10502.	2.2	192
96	A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 3049-3054.	3.0	191
97	Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2014, 50, 9340-9342.	2.2	187
98	NiS2 nanosheets array grown on carbon cloth as an efficient 3D hydrogen evolution cathode. Electrochimica Acta, 2015, 153, 508-514.	2.6	185
99	Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Research, 2016, 9, 3346-3354.	5.8	184
100	A NiCo LDH nanosheet array on graphite felt: an efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3162-3166.	3.0	181
101	Highâ€Performance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie - International Edition, 2021, 60, 25263-25268.	7.2	180
102	Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: a heat-treatment-based strategy. Journal of Materials Chemistry, 2011, 21, 11726.	6.7	179
103	Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. Journal of Hazardous Materials, 2011, 197, 320-326.	6.5	177
104	Self-assembled graphene platelet–glucose oxidase nanostructures for glucose biosensing. Biosensors and Bioelectronics, 2011, 26, 4491-4496.	5.3	176
105	CoSe ₂ Nanowires Array as a 3D Electrode for Highly Efficient Electrochemical Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 3877-3881.	4.0	174
106	An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale, 2017, 9, 16612-16615.	2.8	173
107	One-Step Preparation and Characterization of Poly(propyleneimine) Dendrimer-Protected Silver Nanoclusters. Macromolecules, 2004, 37, 7105-7108.	2.2	172
108	Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by NiCo ₂ O ₄ Nanowire Array. Small, 2022, 18, e2106961.	5.2	171

#	Article	IF	CITATIONS
109	Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catalysis Science and Technology, 2012, 2, 800.	2.1	170
110	High-Efficiency Electrosynthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array. ACS Sustainable Chemistry and Engineering, 2018, 6, 9545-9549.	3.2	170
111	High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst. Journal of Materials Chemistry B, 2020, 8, 5411-5415.	2.9	170
112	Boron Phosphide Nanoparticles: A Nonmetal Catalyst for High‣electivity Electrochemical Reduction of CO ₂ to CH ₃ OH. Advanced Materials, 2019, 31, e1903499.	11.1	169
113	Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nature Communications, 2021, 12, 238.	5.8	169
114	Environmentally Friendly, One-Pot Synthesis of Ag Nanoparticle-Decorated Reduced Graphene Oxide Composites and Their Application to Photocurrent Generation. Inorganic Chemistry, 2012, 51, 4742-4746.	1.9	168
115	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie, 2014, 126, 13069-13073.	1.6	168
116	Ni3S2 nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. International Journal of Hydrogen Energy, 2015, 40, 4727-4732.	3.8	167
117	FeP Nanoparticles Film Grown on Carbon Cloth: An Ultrahighly Active 3D Hydrogen Evolution Cathode in Both Acidic and Neutral Solutions. ACS Applied Materials & Interfaces, 2014, 6, 20579-20584.	4.0	166
118	Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 16747-16789.	5.2	166
119	High-Yield Synthesis of Large Single-Crystalline Gold Nanoplates through a Polyamine Process. Langmuir, 2005, 21, 4710-4712.	1.6	165
120	TiO ₂ nanoparticles–reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2018, 6, 17303-17306.	5.2	165
121	Sâ€Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N ₂ Fixation to NH ₃ . Small Methods, 2019, 3, 1800251.	4.6	165
122	Greatly Enhanced Electrocatalytic N ₂ Reduction on TiO ₂ via V Doping. Small Methods, 2019, 3, 1900356.	4.6	164
123	One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes. Catalysis Science and Technology, 2012, 2, 339-344.	2.1	163
124	Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochimica Acta, 2015, 153, 456-460.	2.6	159
125	Inâ€Situ Growth of NiSe Nanowire Film on Nickel Foam as an Electrode for Highâ€Performance Supercapacitors. ChemElectroChem, 2015, 2, 1903-1907.	1.7	157
126	Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr ₂ O ₄ nanoparticle film. Chemical Communications, 2018, 54, 5462-5465.	2.2	157

#	Article	IF	CITATIONS
127	Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000048.	6.9	157
128	Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosensors and Bioelectronics, 2011, 26, 4656-4660.	5.3	156
129	Self-supported CoP nanosheet arrays: a non-precious metal catalyst for efficient hydrogen generation from alkaline NaBH ₄ solution. Journal of Materials Chemistry A, 2016, 4, 13053-13057.	5.2	154
130	Nickel promoted cobalt disulfide nanowire array supported on carbon cloth: An efficient and stable bifunctional electrocatalyst for full water splitting. Electrochemistry Communications, 2016, 63, 60-64.	2.3	154
131	Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. Chemical Communications, 2015, 51, 1616-1619.	2.2	153
132	Synthesis of porous tubular C/MoS2 nanocomposites and their application as a novel electrode material for supercapacitors with excellent cycling stability. Electrochimica Acta, 2013, 100, 24-28.	2.6	152
133	Sulfur-doped graphene for efficient electrocatalytic N ₂ -to-NH ₃ fixation. Chemical Communications, 2019, 55, 3371-3374.	2.2	152
134	Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1, 100011.	10.1	151
135	Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst, The, 2013, 138, 417-420.	1.7	150
136	Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12201-12225.	5.2	149
137	Recent advances in perovskite oxides as electrode materials for supercapacitors. Chemical Communications, 2021, 57, 2343-2355.	2.2	149
138	Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction. Journal of Materials Chemistry A, 2014, 2, 14812-14816.	5.2	147
139	3D macroporous MoS2 thin film: in situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values. Electrochimica Acta, 2015, 168, 133-138.	2.6	147
140	Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Current Opinion in Electrochemistry, 2021, 29, 100766.	2.5	147
141	A-site perovskite oxides: an emerging functional material for electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2021, 9, 6650-6670.	5.2	146
142	Ni ₃ Se ₂ film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catalysis Science and Technology, 2015, 5, 4954-4958.	2.1	144
143	Efficient and durable N ₂ reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chemical Communications, 2018, 54, 11332-11335.	2.2	144
144	A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3007-3011.	3.0	143

#	Article	IF	CITATIONS
145	Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochimica Acta, 2011, 56, 2295-2298.	2.6	140
146	Copperâ€Nitride Nanowires Array: An Efficient Dualâ€Functional Catalyst Electrode for Sensitive and Selective Nonâ€Enzymatic Glucose and Hydrogen Peroxide Sensing. Chemistry - A European Journal, 2017, 23, 4986-4989.	1.7	140
147	Energyâ€Saving Electrolytic Hydrogen Generation: Ni ₂ P Nanoarray as a Highâ€Performance Nonâ€Nobleâ€Metal Electrocatalyst. Angewandte Chemie, 2017, 129, 860-864.	1.6	140
148	Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356, 165-172.	3.1	140
149	Method for Effective Immobilization of Ru(bpy)32+on an Electrode Surface for Solid-State Electrochemiluminescene Detection. Analytical Chemistry, 2005, 77, 8166-8169.	3.2	138
150	Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chemical Communications, 2017, 53, 5710-5713.	2.2	138
151	Ambient NH ₃ synthesis <i>via</i> electrochemical reduction of N ₂ over cubic sub-micron SnO ₂ particles. Chemical Communications, 2018, 54, 12966-12969.	2.2	138
152	Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: Using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale, 2011, 3, 2142.	2.8	137
153	Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Research, 2021, 14, 555-569.	5.8	137
154	NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance. Chemistry - A European Journal, 2017, 23, 4435-4441.	1.7	134
155	Ultrathin CoFe-Borate Layer Coated CoFe-Layered Double Hydroxide Nanosheets Array: A Non-Noble-Metal 3D Catalyst Electrode for Efficient and Durable Water Oxidation in Potassium Borate. ACS Sustainable Chemistry and Engineering, 2018, 6, 1527-1531.	3.2	134
156	A Ni(OH) ₂ –PtO ₂ hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 1967-1970.	5.2	134
157	Nanoporous CoP ₃ Nanowire Array: Acid Etching Preparation and Application as a Highly Active Electrocatalyst for the Hydrogen Evolution Reaction in Alkaline Solution. ACS Sustainable Chemistry and Engineering, 2018, 6, 11186-11189.	3.2	134
158	Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochemistry Communications, 2013, 32, 9-13.	2.3	133
159	Cu(OH) ₂ @CoCO ₃ (OH) ₂ · <i>n</i> H ₂ O Core–Shell Heterostructure Nanowire Array: An Efficient 3D Anodic Catalyst for Oxygen Evolution and Methanol Electrooxidation. Small, 2017, 13, 1602755.	5.2	133
160	Three-Dimensional Structures of MoS ₂ @Ni Core/Shell Nanosheets Array toward Synergetic Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 14521-14526.	4.0	132
161	Highly Selective Electrochemical Reduction of CO ₂ to Alcohols on an FeP Nanoarray. Angewandte Chemie - International Edition, 2020, 59, 758-762.	7.2	132
162	One-Step Synthesis and Size Control of Dendrimer-Protected Gold Nanoparticles: A Heat-Treatment-Based Strategy. Macromolecular Rapid Communications, 2003, 24, 1024-1028.	2.0	131

#	Article	IF	CITATIONS
163	One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process. Polymer, 2004, 45, 2181-2184.	1.8	131
164	Boron-Doped TiO ₂ for Efficient Electrocatalytic N ₂ Fixation to NH ₃ at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 117-122.	3.2	131
165	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	9.5	130
166	Ultrarapid in Situ Synthesis of Cu ₂ S Nanosheet Arrays on Copper Foam with Room-Temperature-Active lodine Plasma for Efficient and Cost-Effective Oxygen Evolution. ACS Catalysis, 2018, 8, 3859-3864.	5.5	129
167	High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inorganic Chemistry Frontiers, 2018, 5, 1570-1574.	3.0	127
168	A cobalt–phosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustainable Energy and Fuels, 2020, 4, 3884-3887.	2.5	127
169	Mn ₃ O ₄ Nanocube: An Efficient Electrocatalyst Toward Artificial N ₂ Fixation to NH ₃ . Small, 2018, 14, e1803111.	5.2	126
170	Insights into defective TiO ₂ in electrocatalytic N ₂ reduction: combining theoretical and experimental studies. Nanoscale, 2019, 11, 1555-1562.	2.8	126
171	A hierarchical CoTe ₂ –MnTe ₂ hybrid nanowire array enables high activity for oxygen evolution reactions. Chemical Communications, 2018, 54, 10993-10996.	2.2	125
172	A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy. Applied Catalysis B: Environmental, 2019, 244, 844-852.	10.8	125
173	Metal-based electrocatalytic conversion of CO ₂ to formic acid/formate. Journal of Materials Chemistry A, 2020, 8, 21947-21960.	5.2	125
174	An amorphous FeMoS ₄ nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chemical Communications, 2017, 53, 9000-9003.	2.2	124
175	Full Water Splitting Electrocatalyzed by NiWO ₄ Nanowire Array. ACS Sustainable Chemistry and Engineering, 2018, 6, 9555-9559.	3.2	124
176	Enhancing Electrocatalytic N ₂ Reduction to NH ₃ by CeO ₂ Nanorod with Oxygen Vacancies. ACS Sustainable Chemistry and Engineering, 2019, 7, 2889-2893.	3.2	121
177	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	121
178	Enhanced Photoelectrochemical Water Oxidation Performance of Fe ₂ O ₃ Nanorods Array by S Doping. ACS Sustainable Chemistry and Engineering, 2017, 5, 7502-7506.	3.2	120
179	An Fe(TCNQ) ₂ nanowire array on Fe foil: an efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54, 2300-2303.	2.2	120
180	Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Research, 2019, 12, 919-924.	5.8	120

#	Article	IF	CITATIONS
181	Improving the electrocatalytic N ₂ reduction activity of Pd nanoparticles through surface modification. Journal of Materials Chemistry A, 2019, 7, 21674-21677.	5.2	118
182	Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors. Electrochimica Acta, 2013, 107, 339-342.	2.6	117
183	Fe ₃ Nâ€Co ₂ N Nanowires Array: A Nonâ€Nobleâ€Metal Bifunctional Catalyst Electrode for Highâ€Performance Glucose Oxidation and H ₂ O ₂ Reduction toward Nonâ€Enzymatic Sensing Applications. Chemistry - A European Journal, 2017, 23, 5214-5218.	1.7	117
184	Electrocatalytic Hydrogenation of N ₂ to NH ₃ by MnO: Experimental and Theoretical Investigations. Advanced Science, 2019, 6, 1801182.	5.6	117
185	Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochimica Acta, 2015, 154, 345-351.	2.6	116
186	Highly-active oxygen evolution electrocatalyzed by a Fe-doped NiSe nanoflake array electrode. Chemical Communications, 2016, 52, 4529-4532.	2.2	116
187	Emerging alkali metal ion (Li ⁺ , Na ⁺ , K ⁺ and Rb ⁺) doped perovskite films for efficient solar cells: recent advances and prospects. Journal of Materials Chemistry A, 2019, 7, 24150-24163.	5.2	116
188	An ultrasmall Ru ₂ P nanoparticles–reduced graphene oxide hybrid: an efficient electrocatalyst for NH ₃ synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 77-81.	5.2	115
189	A self-supported NiMoS ₄ nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 16585-16589.	5.2	114
190	Boosting electrocatalytic N ₂ reduction by MnO ₂ with oxygen vacancies. Chemical Communications, 2019, 55, 4627-4630.	2.2	113
191	Noble-metal-free electrocatalysts toward H ₂ O ₂ production. Journal of Materials Chemistry A, 2020, 8, 23123-23141.	5.2	113
192	Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2020, 8, 11493-11510.	5.2	113
193	Self-supported nickel nitride as an efficient high-performance three-dimensional cathode for the alkaline hydrogen evolution reaction. Electrochimica Acta, 2016, 191, 841-845.	2.6	112
194	Large scale, templateless, surfactantless route to rapid synthesis of uniform poly(o-phenylenediamine) nanobelts. Chemical Communications, 2004, , 1182.	2.2	111
195	Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu ²⁺ detection. Analyst, The, 2014, 139, 5065-5068.	1.7	111
196	Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Research, 2022, 15, 6084-6090.	5.8	111
197	Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. Journal of Materials Chemistry A, 2021, 9, 6402-6412.	5.2	110
198	CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. Chinese Chemical Letters, 2022, 33, 890-892.	4.8	110

#	Article	IF	CITATIONS
199	Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Journal of Colloid and Interface Science, 2011, 363, 615-619.	5.0	108
200	In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Research, 2022, 15, 3050-3055.	5.8	108
201	One-step electrodeposition of Ni–Co–S nanosheets film as a bifunctional electrocatalyst for efficient water splitting. International Journal of Hydrogen Energy, 2016, 41, 7264-7269.	3.8	107
202	An MnO ₂ –Ti ₃ C ₂ T _x MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 18823-18827.	5.2	107
203	Fe ^{III} â€Doped Twoâ€Dimensional C ₃ N ₄ Nanofusiform: A New O ₂ â€Evolving and Mitochondriaâ€Targeting Photodynamic Agent for MRI and Enhanced Antitumor Therapy. Small, 2016, 12, 5477-5487.	5.2	106
204	Interface engineering of a CeO ₂ –Cu ₃ P nanoarray for efficient alkaline hydrogen evolution. Nanoscale, 2018, 10, 2213-2217.	2.8	106
205	FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. Chemical Communications, 2018, 54, 9341-9344.	2.2	106
206	Flexible RFID Tag Metal Antenna on Paperâ€Based Substrate by Inkjet Printing Technology. Advanced Functional Materials, 2019, 29, 1902579.	7.8	106
207	Sulfur dots–graphene nanohybrid: a metal-free electrocatalyst for efficient N ₂ -to-NH ₃ fixation under ambient conditions. Chemical Communications, 2019, 55, 3152-3155.	2.2	106
208	Ambient electrohydrogenation of N ₂ for NH ₃ synthesis on non-metal boron phosphide nanoparticles: the critical role of P in boosting the catalytic activity. Journal of Materials Chemistry A, 2019, 7, 16117-16121.	5.2	105
209	Defect-rich fluorographene nanosheets for artificial N ₂ fixation under ambient conditions. Chemical Communications, 2019, 55, 4266-4269.	2.2	105
210	CoS2 nanoneedle array on Ti mesh: A stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Electrochimica Acta, 2017, 246, 776-782.	2.6	104
211	Boosting electrocatalytic N ₂ reduction to NH ₃ on β-FeOOH by fluorine doping. Chemical Communications, 2019, 55, 3987-3990.	2.2	104
212	Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection â€. Nucleic Acids Research, 2011, 39, e37-e37.	6.5	103
213	WS2 nanoparticles–encapsulated amorphous carbon tubes: A novel electrode material for supercapacitors with a high rate capability. Electrochemistry Communications, 2013, 28, 75-78.	2.3	103
214	Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. Journal of Materials Chemistry A, 2016, 4, 10114-10117.	5.2	103
215	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A, 2021, 9, 11879-11907.	5.2	102
216	Highâ€Performance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie, 2021, 133, 25467-25472.	1.6	102

#	Article	IF	CITATIONS
217	Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS ₂ nanosheets. Journal of Materials Chemistry A, 2021, 9, 6117-6122.	5.2	102
218	Ag@Poly(<i>m</i> -phenylenediamine) Coreâ^'Shell Nanoparticles for Highly Selective, Multiplex Nucleic Acid Detection. Langmuir, 2011, 27, 2170-2175.	1.6	101
219	Cu/(Cu(OH) 2 -CuO) core/shell nanorods array: in-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 2015, 163, 102-106.	2.6	101
220	Energy-efficient electrolytic hydrogen generation using a Cu ₃ P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorganic Chemistry Frontiers, 2017, 4, 420-423.	3.0	101
221	Metallic nickel nitride nanosheet: An efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 2018, 255, 2794-2799.	4.0	101
222	Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. International Journal of Hydrogen Energy, 2022, 47, 3580-3586.	3.8	101
223	Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. Journal of Nanoparticle Research, 2011, 13, 4539-4548.	0.8	100
224	Ambient electrochemical N ₂ -to-NH ₃ conversion catalyzed by TiO ₂ decorated juncus effusus-derived carbon microtubes. Inorganic Chemistry Frontiers, 2022, 9, 1514-1519.	3.0	100
225	Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst, The, 2012, 137, 1325.	1.7	99
226	In Situ Electrochemically Activated CoMn-S@NiO/CC Nanosheets Array for Enhanced Hydrogen Evolution. ACS Catalysis, 2016, 6, 2797-2801.	5.5	99
227	Zn0.76Co0.24S/CoS2 nanowires array for efficient electrochemical splitting of water. Electrochimica Acta, 2016, 190, 360-364.	2.6	99
228	Bilateral Interfaces in In ₂ Se ₃ -CoIn ₂ -CoSe ₂ Heterostructures for High-Rate Reversible Sodium Storage. ACS Nano, 2021, 15, 13307-13318.	7.3	99
229	Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chemical Communications, 2016, 52, 14438-14441.	2.2	98
230	Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Research, 2022, 15, 972-977.	5.8	98
231	An Fe-MOF nanosheet array with superior activity towards the alkaline oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1405-1408.	3.0	97
232	Cr ₂ O ₃ Nanoparticle-Reduced Graphene Oxide Hybrid: A Highly Active Electrocatalyst for N ₂ Reduction at Ambient Conditions. Inorganic Chemistry, 2019, 58, 2257-2260.	1.9	97
233	SeC Bonding Promoting Fast and Durable Na ⁺ Storage in Yolk–Shell SnSe ₂ @SeC. Small, 2020, 16, e2002486.	5.2	97
234	Hierarchical CuO@ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis. Nanoscale, 2020, 12, 5359-5362.	2.8	97

#	Article	IF	CITATIONS
235	Ni2P nanosheets array as a novel electrochemical catalyst electrode for non-enzymatic H2O2 sensing. Electrochimica Acta, 2017, 253, 517-521.	2.6	96
236	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021, 23, 2834-2867.	4.6	96
237	Bimetallic Nickelâ€Substituted Cobaltâ€Borate Nanowire Array: An Earthâ€Abundant Water Oxidation Electrocatalyst with Superior Activity and Durability at Near Neutral pH. Small, 2017, 13, 1700394.	5.2	95
238	A Ni(OH) ₂ –CoS ₂ hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media. Nanoscale, 2017, 9, 16632-16637.	2.8	95
239	Ammonia Synthesis from Electrocatalytic N ₂ Reduction under Ambient Conditions by Fe ₂ O ₃ Nanorods. ChemCatChem, 2018, 10, 4530-4535.	1.8	95
240	Electrocatalytic N ₂ -to-NH ₃ conversion with high faradaic efficiency enabled using a Bi nanosheet array. Chemical Communications, 2019, 55, 5263-5266.	2.2	95
241	NiFe Layered-Double-Hydroxide Nanosheet Arrays on Graphite Felt: A 3D Electrocatalyst for Highly Efficient Water Oxidation in Alkaline Media. Inorganic Chemistry, 2021, 60, 12703-12708.	1.9	95
242	Luminescent Supramolecular Microstructures Containing Ru(bpy)32+:Â Solution-Based Self-Assembly Preparation and Solid-State Electrochemiluminescence Detection Application. Analytical Chemistry, 2007, 79, 2588-2592.	3.2	94
243	Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing. Journal of Materials Chemistry B, 2017, 5, 1901-1904.	2.9	94
244	Interface engineering of the Ni(OH) ₂ –Ni ₃ N nanoarray heterostructure for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 833-836.	5.2	94
245	Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Research, 2022, 15, 186-194.	5.8	94
246	Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Research, 2019, 12, 1093-1098.	5.8	93
247	Recent Progress in Electrocatalytic Methanation of CO ₂ at Ambient Conditions. Advanced Functional Materials, 2021, 31, 2009449.	7.8	92
248	Supramolecular Microfibrils of <i>o</i> -Phenylenediamine Dimers: Oxidation-Induced Morphology Change and the Spontaneous Formation of Ag Nanoparticle Decorated Nanofibers. Langmuir, 2010, 26, 15112-15116.	1.6	91
249	Nano ₆₀ : A Novel, Effective, Fluorescent Sensing Platform for Biomolecular Detection. Small, 2011, 7, 1562-1568.	5.2	91
250	Cobalt phosphide nanoparticles film growth on carbon cloth: A high-performance cathode for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 16806-16811.	3.8	90
251	Three-dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode. Physical Chemistry Chemical Physics, 2014, 16, 16909.	1.3	90
252	A Ni ₂ P nanosheet array integrated on 3D Ni foam: an efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation. Journal of Materials Chemistry A, 2016, 4, 12407-12410.	5.2	90

#	Article	IF	CITATIONS
253	Hierarchical CuCo ₂ S ₄ nanoarrays for high-efficient and durable water oxidation electrocatalysis. Chemical Communications, 2018, 54, 78-81.	2.2	90
254	Spinel LiMn ₂ O ₄ Nanofiber: An Efficient Electrocatalyst for N ₂ Reduction to NH ₃ under Ambient Conditions. Inorganic Chemistry, 2019, 58, 9597-9601.	1.9	90
255	N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Research, 2022, 15, 304-309.	5.8	90
256	One-step preparation of highly concentrated well-stable gold colloids by direct mix of polyelectrolyte and HAuCl4 aqueous solutions at room temperature. Journal of Colloid and Interface Science, 2005, 288, 301-303.	5.0	89
257	Ti ₂ O ₃ Nanoparticles with Ti ³⁺ Sites toward Efficient NH ₃ Electrosynthesis under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 41715-41722.	4.0	89
258	CoP nanoarray: a robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 2017, 4, 659-662.	3.0	88
259	<i>In situ</i> electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: a highly conductive electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 1425-1428.	2.2	88
260	ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. EScience, 2022, 2, 382-388.	25.0	88
261	Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. Journal of Energy Chemistry, 2020, 50, 402-408.	7.1	87
262	Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst, The, 2011, 136, 1806.	1.7	86
263	Two-dimensional hybrid mesoporous Fe2O3–graphene nanostructures: A highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosensors and Bioelectronics, 2014, 52, 452-457.	5.3	86
264	Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology, 2016, 27, 12LT01.	1.3	86
265	N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2017, 4, 537-540.	3.0	86
266	A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection. Catalysis Science and Technology, 2012, 2, 813.	2.1	85
267	Preparation of Ag nanoparticle-decorated polypyrrole colloids and their application for H2O2 detection. Electrochemistry Communications, 2011, 13, 785-787.	2.3	84
268	Surface Modification of a NiS ₂ Nanoarray with Ni(OH) ₂ toward Superior Water Reduction Electrocatalysis in Alkaline Media. Inorganic Chemistry, 2017, 56, 13651-13654.	1.9	84
269	WO ₃ nanosheets rich in oxygen vacancies for enhanced electrocatalytic N ₂ reduction to NH ₃ . Nanoscale, 2019, 11, 19274-19277.	2.8	84
270	Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. Journal of Materials Chemistry, 2011, 21, 824-828.	6.7	83

#	Article	IF	CITATIONS
271	A new preparation of Au nanoplates and their application for glucose sensing. Biosensors and Bioelectronics, 2011, 28, 344-348.	5.3	83
272	One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H2O2 detection. Electrochimica Acta, 2012, 79, 46-51.	2.6	83
273	High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. Journal of Materials Chemistry, 2012, 22, 8775.	6.7	83
274	Graphene film-confined molybdenum sulfide nanoparticles: Facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst. Journal of Power Sources, 2014, 263, 181-185.	4.0	83
275	Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal–organic framework nanorods: Synergies of the metal center and organic linker. Biosensors and Bioelectronics, 2015, 71, 1-6.	5.3	83
276	Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N ₂ -to-NH ₃ fixation by a CoP nanoarray. Journal of Materials Chemistry A, 2021, 9, 13861-13866.	5.2	83
277	In situ electrochemical surface derivation of cobalt phosphate from a Co(CO ₃) _{0.5} (OH)·0.11H ₂ O nanoarray for efficient water oxidation in neutral aqueous solution. Nanoscale, 2017, 9, 3752-3756.	2.8	82
278	Electrocatalytic CO ₂ Reduction to Alcohols with High Selectivity over a Two-Dimensional Fe ₂ P ₂ S ₆ Nanosheet. ACS Catalysis, 2019, 9, 9721-9725.	5.5	82
279	Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N,N-dimethylformamide. RSC Advances, 2011, 1, 951.	1.7	81
280	Ultrathin graphitic C3N4 nanofibers: Hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sensors and Actuators B: Chemical, 2015, 216, 453-460.	4.0	81
281	PdP ₂ nanoparticles–reduced graphene oxide for electrocatalytic N ₂ conversion to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 24760-24764.	5.2	81
282	Electrodeposited Niâ€P Alloy Nanoparticle Films for Efficiently Catalyzing Hydrogen―and Oxygenâ€Evolution Reactions. ChemNanoMat, 2015, 1, 558-561.	1.5	80
283	Nitrogen-doped carbon nanotube supported iron phosphide nanocomposites for highly active electrocatalysis of the hydrogen evolution reaction. Electrochimica Acta, 2014, 149, 324-329.	2.6	79
284	A nickel-borate nanoarray: a highly active 3D oxygen-evolving catalyst electrode operating in near-neutral water. Chemical Communications, 2017, 53, 3070-3073.	2.2	79
285	A cobalt-borate nanosheet array: an efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. Journal of Materials Chemistry A, 2017, 5, 7305-7308.	5.2	79
286	Monolithically integrated copper phosphide nanowire: An efficient electrocatalyst for sensitive and selective nonenzymatic glucose detection. Sensors and Actuators B: Chemical, 2017, 244, 11-16.	4.0	79
287	Metal–organic framework-derived shuttle-like V ₂ O ₃ /C for electrocatalytic N ₂ reduction under ambient conditions. Inorganic Chemistry Frontiers, 2019, 6, 391-395.	3.0	79
288	Efficient electrohydrogenation of N ₂ to NH ₃ by oxidized carbon nanotubes under ambient conditions. Chemical Communications, 2019, 55, 4997-5000.	2.2	79

#	Article	IF	CITATIONS
289	Se doping: an effective strategy toward Fe ₂ O ₃ nanorod arrays for greatly enhanced solar water oxidation. Journal of Materials Chemistry A, 2017, 5, 12086-12090.	5.2	78
290	Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni ₂ P–CeO ₂ . Inorganic Chemistry, 2018, 57, 548-552.	1.9	78
291	Electrocatalytic N ₂ -to-NH ₃ conversion using oxygen-doped graphene: experimental and theoretical studies. Chemical Communications, 2019, 55, 7502-7505.	2.2	78
292	Conductive Two-Dimensional Magnesium Metal–Organic Frameworks for High-Efficiency O ₂ Electroreduction to H ₂ O ₂ . ACS Catalysis, 2022, 12, 6092-6099.	5.5	78
293	Polyaniline nanofibres for fluorescent nucleic acid detection. Nanoscale, 2011, 3, 967.	2.8	77
294	Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	75
295	Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications, 2021, 122, 106881.	2.3	75
296	Photocatalytic synthesis of highly dispersed Pd nanoparticles on reduced graphene oxide and their application in methanol electro-oxidation. Catalysis Science and Technology, 2012, 2, 1153.	2.1	74
297	A perovskite La ₂ Ti ₂ O ₇ nanosheet as an efficient electrocatalyst for artificial N ₂ fixation to NH ₃ in acidic media. Chemical Communications, 2019, 55, 6401-6404.	2.2	74
298	Electrochemical nitrogen reduction: recent progress and prospects. Chemical Communications, 2021, 57, 7335-7349.	2.2	74
299	Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Research, 2022, 15, 1039-1046.	5.8	74
300	Interconnected Coâ€Entrapped, Nâ€Doped Carbon Nanotube Film as Active Hydrogen Evolution Cathode over the Whole pH Range. ChemSusChem, 2015, 8, 1850-1855.	3.6	73
301	Hierarchical nickel oxide nanosheet@nanowire arrays on nickel foam: an efficient 3D electrode for methanol electro-oxidation. Catalysis Science and Technology, 2016, 6, 1157-1161.	2.1	73
302	High-efficiency electrochemical nitrite reduction to ammonium using a Cu ₃ P nanowire array under ambient conditions. Green Chemistry, 2021, 23, 5487-5493.	4.6	73
303	A magnetron sputtered Mo ₃ Si thin film: an efficient electrocatalyst for N ₂ reduction under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 884-888.	5.2	72
304	High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Materials Today Physics, 2022, 23, 100619.	2.9	72
305	Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Research, 2022, 15, 7134-7138.	5.8	72
306	Fast and Sensitive Colorimetric Detection of H ₂ O ₂ and Glucose: A Strategy Based on Polyoxometalate Clusters. ChemPlusChem, 2012, 77, 541-544.	1.3	71

#	Article	IF	CITATIONS
307	2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters, 2019, 30, 2089-2109.	4.8	71
308	Greatly Enhanced Electrocatalytic N ₂ Reduction over V ₂ O ₃ /C by P Doping. ChemNanoMat, 2020, 6, 1315-1319.	1.5	71
309	Bi nanodendrites for efficient electrocatalytic N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2020, 56, 2107-2110.	2.2	71
310	High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chemical Engineering Journal, 2022, 435, 135104.	6.6	71
311	Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. Journal of Colloid and Interface Science, 2022, 623, 513-519.	5.0	71
312	Fe(<scp>iii</scp>)-based coordination polymernanoparticles: peroxidase-like catalytic activity and their application to hydrogen peroxide and glucose detection. Catalysis Science and Technology, 2012, 2, 432-436.	2.1	70
313	Hydrazine-assisted electrolytic hydrogen production: CoS ₂ nanoarray as a superior bifunctional electrocatalyst. New Journal of Chemistry, 2017, 41, 4754-4757.	1.4	70
314	Facile synthesis of novel Ni(<scp>ii</scp>)-based metal–organic coordination polymernanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst, The, 2013, 138, 429-433.	1.7	69
315	Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst. Journal of Power Sources, 2014, 257, 170-173.	4.0	69
316	Facilitating Active Species Generation by Amorphous NiFeâ€B _i Layer Formation on NiFe‣DH Nanoarray for Efficient Electrocatalytic Oxygen Evolution at Alkaline pH. Chemistry - A European Journal, 2017, 23, 11499-11503.	1.7	69
317	In situ surface derivation of an Fe–Co–Bi layer on an Fe-doped Co ₃ O ₄ nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions. Journal of Materials Chemistry A, 2017, 5, 6388-6392.	5.2	68
318	Dendritic Cu: a high-efficiency electrocatalyst for N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2019, 55, 14474-14477.	2.2	68
319	A Biomassâ€Derived Carbonâ€Based Electrocatalyst for Efficient N ₂ Fixation to NH ₃ under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 1914-1917.	1.7	68
320	High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni ₂ P nanoarray under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 24268-24275.	5.2	68
321	Plasma-induced defective TiO2-x with oxygen vacancies: A high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem Catalysis, 2021, 1, 1437-1448.	2.9	68
322	One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution. Electrochimica Acta, 2014, 134, 8-12.	2.6	67
323	A platinum oxide decorated amorphous cobalt oxide hydroxide nanosheet array towards alkaline hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 3864-3868.	5.2	67
324	P-Doped graphene toward enhanced electrocatalytic N ₂ reduction. Chemical Communications, 2020, 56, 1831-1834.	2.2	67

#	Article	IF	CITATIONS
325	Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction. Materials Today Physics, 2020, 15, 100280.	2.9	67
326	Enhanced Electrochemical H ₂ O ₂ Production via Two-Electron Oxygen Reduction Enabled by Surface-Derived Amorphous Oxygen-Deficient TiO _{2–<i>x</i>} . ACS Applied Materials & Interfaces, 2021, 13, 33182-33187.	4.0	67
327	Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. Journal of Colloid and Interface Science, 2022, 615, 636-642.	5.0	67
328	Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. Chemical Engineering Journal, 2022, 433, 134477.	6.6	66
329	N-doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2013, 36, 57-61.	2.3	65
330	Highâ€Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angewandte Chemie, 2017, 129, 1084-1088.	1.6	65
331	Ultrafine PtO ₂ nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chemical Communications, 2018, 54, 810-813.	2.2	65
332	Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. International Journal of Hydrogen Energy, 2015, 40, 9866-9871.	3.8	64
333	Superior alkaline hydrogen evolution electrocatalysis enabled by an ultrafine PtNi nanoparticle-decorated Ni nanoarray with ultralow Pt loading. Inorganic Chemistry Frontiers, 2018, 5, 1365-1369.	3.0	64
334	Method for effective immobilization of Ag nanoparticles/graphene oxide composites on single-stranded DNA modified gold electrode for enzymeless H2O2 detection. Journal of Materials Science, 2011, 46, 5260-5266.	1.7	63
335	Replacing Oxygen Evolution with Hydrazine Oxidation at the Anode for Energy aving Electrolytic Hydrogen Production. ChemElectroChem, 2017, 4, 481-484.	1.7	63
336	NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Materials Today Energy, 2017, 3, 9-14.	2.5	63
337	Recent Advances in Nonprecious Metal Oxide Electrocatalysts and Photocatalysts for N ₂ Reduction Reaction under Ambient Condition. Small Science, 2021, 1, 2000069.	5.8	63
338	Rapid Self-Assembly of Oligo(o-phenylenediamine) into One-Dimensional Structures through a Facile Reprecipitation Route. Langmuir, 2006, 22, 3358-3361.	1.6	62
339	Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Research, 2021, 14, 2831-2836.	5.8	62
340	Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. Journal of Colloid and Interface Science, 2022, 606, 1055-1063.	5.0	62
341	<i>In situ</i> tailoring bimetallic–organic framework-derived yolk–shell NiS ₂ /CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. Journal of Materials Chemistry A, 2021, 9, 15807-15819.	5.2	62
342	Production of stable aqueous dispersion of poly(3,4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection. Analyst, The, 2011, 136, 4898.	1.7	61

#	Article	IF	CITATIONS
343	Highly efficient electrochemical hydrogen evolution based on nickel diselenide nanowall film. Nanotechnology, 2016, 27, 20LT02.	1.3	61
344	Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chinese Journal of Catalysis, 2021, 42, 482-489.	6.9	61
345	FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Research, 2022, 15, 4008-4013.	5.8	61
346	One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor. Journal of Materials Chemistry B, 2016, 4, 7540-7544.	2.9	60
347	Efficient oxygen evolution electrocatalyzed by a Cu nanoparticle-embedded N-doped carbon nanowire array. Inorganic Chemistry Frontiers, 2018, 5, 1188-1192.	3.0	60
348	Interconnected Network of Core–Shell CoP@CoBiPi for Efficient Water Oxidation Electrocatalysis under Near Neutral Conditions. ChemSusChem, 2017, 10, 1370-1374.	3.6	59
349	Electrocatalytic N ₂ Fixation over Hollow VO ₂ Microspheres at Ambient Conditions. ChemElectroChem, 2019, 6, 1014-1018.	1.7	59
350	Ambient electrochemical NH ₃ synthesis from N ₂ and water enabled by ZrO ₂ nanoparticles. Chemical Communications, 2020, 56, 3673-3676.	2.2	59
351	Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. Chinese Journal of Catalysis, 2021, 42, 1024-1029.	6.9	59
352	Efficient electrochemical water splitting catalyzed by electrodeposited NiFe nanosheets film. International Journal of Hydrogen Energy, 2016, 41, 8785-8792.	3.8	58
353	Homologous Catalysts Based on Feâ€Doped CoP Nanoarrays for Highâ€Performance Full Water Splitting under Benign Conditions. ChemSusChem, 2017, 10, 3188-3192.	3.6	58
354	Cathodic electrochemical activation of Co ₃ O ₄ nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity. Chemical Communications, 2018, 54, 2150-2153.	2.2	58
355	High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt–phosphorus alloy film. Chemical Communications, 2021, 57, 9720-9723.	2.2	58
356	Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorganic Chemistry Frontiers, 2022, 9, 1366-1372.	3.0	58
357	High-Performance Electrochemical Nitrate Reduction to Ammonia under Ambient Conditions Using a FeOOH Nanorod Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 17312-17318.	4.0	58
358	Iron-substituted SBA-15 microparticles: a peroxidase-like catalyst for H2O2 detection. Analyst, The, 2011, 136, 4894.	1.7	57
359	Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of methanol. Catalysis Science and Technology, 2011, 1, 1636.	2.1	57
360	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57

#	Article	IF	CITATIONS
361	Fluorescence-enhanced nucleic acid detection: using coordination polymer colloids as a sensing platform. Chemical Communications, 2011, 47, 2625.	2.2	56
362	Benzoate Anionâ€Intercalated Layered Cobalt Hydroxide Nanoarray: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemSusChem, 2017, 10, 4004-4008.	3.6	56
363	Co3(hexahydroxytriphenylene)2: A conductive metal—organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Research, 2020, 13, 1008-1012.	5.8	56
364	Functional integration of hierarchical core–shell architectures <i>via</i> vertically arrayed ultrathin CuSe nanosheets decorated on hollow CuS microcages targeting highly effective sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 27615-27628.	5.2	56
365	Synthesis and Study of Plasmonâ€Induced Carrier Behavior at Ag/TiO ₂ Nanowires. Chemistry - A European Journal, 2012, 18, 8508-8514.	1.7	55
366	One-step solvothermal synthesis of MoS2/TiO2 nanocomposites with enhanced photocatalytic H2 production. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	55
367	Self-standing Ni-WN heterostructure nanowires array: A highly efficient catalytic cathode for hydrogen evolution reaction in alkaline solution. Electrochimica Acta, 2016, 210, 729-733.	2.6	55
368	Core–shell CoFe ₂ O ₄ @Co–Fe–Bi nanoarray: a surface-amorphization water oxidation catalyst operating at near-neutral pH. Nanoscale, 2017, 9, 7714-7718.	2.8	55
369	Highâ€Performance Nonâ€Enzyme Hydrogen Peroxide Detection in Neutral Solution: Using a Nickel Borate Nanoarray as a 3D Electrochemical Sensor. Chemistry - A European Journal, 2017, 23, 16179-16183.	1.7	55
370	TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Materials Today Physics, 2021, 18, 100396.	2.9	55
371	Electrochemical two-electron O ₂ reduction reaction toward H ₂ O ₂ production: using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. Journal of Materials Chemistry A, 2021, 9, 26019-26027.	5.2	55
372	A TiO _{2â^'<i>x</i>} nanobelt array with oxygen vacancies: an efficient electrocatalyst toward nitrite conversion to ammonia. Chemical Communications, 2022, 58, 3669-3672.	2.2	55
373	Mixing Aqueous Ferric Chloride and <i>O</i> -Phenylenediamine Solutions at Room Temperature:  A Fast, Economical Route to Ultralong Microfibrils of Assemblied <i>O</i> -Phenylenediamine Dimers. Langmuir, 2007, 23, 10441-10444.	1.6	54
374	A novel fluorescent aptasensor for thrombin detection: using poly(m-phenylenediamine) rods as an effective sensing platform. Chemical Communications, 2011, 47, 3927.	2.2	54
375	An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide. Nanotechnology, 2016, 27, 23LT01.	1.3	54
376	Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N ₂ -to-NH ₃ fixation under ambient conditions. Chemical Communications, 2019, 55, 2684-2687.	2.2	54
377	Cu ₃ P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N ₂ -to-NH ₃ conversion under ambient conditions. Chemical Communications, 2020, 56, 9328-9331.	2.2	54
378	Sn dendrites for electrocatalytic N ₂ reduction to NH ₃ under ambient conditions. Sustainable Energy and Fuels, 2020, 4, 4469-4472.	2.5	54

#	Article	IF	CITATIONS
379	CuS concave polyhedral superstructures enabled efficient N ₂ electroreduction to NH ₃ at ambient conditions. Inorganic Chemistry Frontiers, 2021, 8, 3105-3110.	3.0	54
380	MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100586.	2.9	54
381	A novel single-labeled fluorescent oligonucleotide probe for silver(<scp>i</scp>) ion detection based on the inherent quenching ability of deoxyguanosines. Analyst, The, 2011, 136, 891-893.	1.7	53
382	Poly(<i>o</i> -phenylenediamine) Colloid-Quenched Fluorescent Oligonucleotide as a Probe for Fluorescence-Enhanced Nucleic Acid Detection. Langmuir, 2011, 27, 874-877.	1.6	53
383	A new application of mesoporous carbon microparticles to nucleic acid detection. Journal of Materials Chemistry, 2011, 21, 339-341.	6.7	53
384	Enabling electrochemical conversion of N ₂ to NH ₃ under ambient conditions by a CoP ₃ nanoneedle array. Journal of Materials Chemistry A, 2020, 8, 17956-17959.	5.2	53
385	A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochimica Acta, 2012, 60, 13-16.	2.6	52
386	CuO@CoFe Layered Double Hydroxide Core–Shell Heterostructure as an Efficient Water Oxidation Electrocatalyst under Mild Alkaline Conditions. Inorganic Chemistry, 2020, 59, 9491-9495.	1.9	52
387	Coupling denitrification and ammonia synthesis <i>via</i> selective electrochemical reduction of nitric oxide over Fe ₂ O ₃ nanorods. Journal of Materials Chemistry A, 2022, 10, 6454-6462.	5.2	52
388	Ag@poly(m-phenylenediamine)-Ag core–shell nanoparticles: one-step preparation, characterization, and their application for H2O2 detection. Catalysis Science and Technology, 2011, 1, 1393.	2.1	51
389	High-Efficiency and Durable Water Oxidation under Mild pH Conditions: An Iron Phosphate–Borate Nanosheet Array as a Non-Noble-Metal Catalyst Electrode. Inorganic Chemistry, 2017, 56, 3131-3135.	1.9	51
390	Surface Amorphization: A Simple and Effective Strategy toward Boosting the Electrocatalytic Activity for Alkaline Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 8518-8522.	3.2	51
391	High-performance NH ₃ production <i>via</i> NO electroreduction over a NiO nanosheet array. Chemical Communications, 2021, 57, 13562-13565.	2.2	51
392	Nano-C60 as a novel, effective fluorescent sensing platform for mercury(ii) ion detection at critical sensitivity and selectivity. Nanoscale, 2011, 3, 2155.	2.8	50
393	Carbon nanospheres for fluorescent biomolecular detection. Journal of Materials Chemistry, 2011, 21, 4663.	6.7	50
394	One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catalysis Science and Technology, 2012, 2, 2227.	2.1	50
395	Photoassisted Preparation of Cobalt Phosphate/Graphene Oxide Composites: A Novel Oxygenâ€Evolving Catalyst with High Efficiency. Small, 2013, 9, 2709-2714.	5.2	50
396	Off-Stoichiometric Methylammonium Iodide Passivated Large-Grain Perovskite Film in Ambient Air for Efficient Inverted Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 39882-39889.	4.0	50

#	Article	IF	CITATIONS
397	An amorphous WC thin film enabled high-efficiency N ₂ reduction electrocatalysis under ambient conditions. Chemical Communications, 2021, 57, 7806-7809.	2.2	50
398	Ambient N ₂ -to-NH ₃ fixation over a CeO ₂ nanoparticle decorated three-dimensional carbon skeleton. Sustainable Energy and Fuels, 2022, 6, 3344-3348.	2.5	50
399	PH-driven dissolution–precipitation: a novel route toward ultrathin Ni(OH)2 nanosheets array on nickel foam as binder-free anode for Li-ion batteries with ultrahigh capacity. CrystEngComm, 2013, 15, 8300.	1.3	49
400	A NiCo ₂ O ₄ @Ni–Co–Ci core–shell nanowire array as an efficient electrocatalyst for water oxidation at near-neutral pH. Chemical Communications, 2017, 53, 7812-7815.	2.2	49
401	Bimetallic NiCoP Nanosheets Array for High-Performance Urea Electro-Oxidation and Less Energy-Intensive Electrolytic Hydrogen Production. ChemistrySelect, 2017, 2, 10285-10289.	0.7	49
402	<i>In situ</i> development of amorphous Mn–Co–P shell on MnCo ₂ O ₄ nanowire array for superior oxygen evolution electrocatalysis in alkaline media. Chemical Communications, 2018, 54, 1077-1080.	2.2	49
403	Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. Journal of Materials Chemistry C, 2019, 7, 10724-10742.	2.7	49
404	Hollow Bi ₂ MoO ₆ Sphere Effectively Catalyzes the Ambient Electroreduction of N ₂ to NH ₃ . ACS Sustainable Chemistry and Engineering, 2019, 7, 12692-12696.	3.2	49
405	Ambient electrochemical N ₂ -to-NH ₃ fixation enabled by Nb ₂ O ₅ nanowire array. Inorganic Chemistry Frontiers, 2019, 6, 423-427.	3.0	49
406	Ti ³⁺ self-doped TiO _{2â^'x} nanowires for efficient electrocatalytic N ₂ reduction to NH ₃ . Chemical Communications, 2020, 56, 1074-1077.	2.2	49
407	Pt Nanoparticles:Â Heat Treatment-Based Preparation and Ru(bpy)32+-Mediated Formation of Aggregates That Can Form Stable Films on Bare Solid Electrode Surfaces for Solid-State Electrochemiluminescence Detection. Analytical Chemistry, 2006, 78, 6674-6677.	3.2	48
408	Nickel–iron foam as a three-dimensional robust oxygen evolution electrode with high activity. International Journal of Hydrogen Energy, 2015, 40, 13258-13263.	3.8	48
409	Selfâ€Templating Construction of Hollow Amorphous CoMoS ₄ Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral pH. Chemistry - A European Journal, 2017, 23, 12718-12723.	1.7	48
410	Electrospun TiC/C nanofibers for ambient electrocatalytic N ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 19657-19661.	5.2	48
411	FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Research, 2020, 13, 209-214.	5.8	48
412	Modulating Oxygen Vacancies of TiO ₂ Nanospheres by Mn-Doping to Boost Electrocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 1512-1517.	3.2	48
413	An Mn-doped NiCoP flower-like structure as a highly efficient electrocatalyst for hydrogen evolution reaction in acidic and alkaline solutions with long duration. Nanoscale, 2021, 13, 11069-11076.	2.8	48
414	Green photocatalytic synthesis of Ag nanoparticle-decorated TiO2 nanowires for nonenzymatic amperometric H2O2 detection. Electrochimica Acta, 2012, 74, 275-279.	2.6	47

#	Article	IF	CITATIONS
415	lodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. Chemical Communications, 2018, 54, 2666-2669.	2.2	47
416	Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. Journal of Materials Chemistry A, 2022, 10, 2842-2848.	5.2	47
417	One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. RSC Advances, 2012, 2, 1318.	1.7	46
418	Reduced graphene oxide decorated with FeF3 nanoparticles: Facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries. Electrochimica Acta, 2013, 111, 80-85.	2.6	46
419	NixSy-MoS2 hybrid microspheres: One-pot hydrothermal synthesis and their application as a novel hydrogen evolution reaction electrocatalyst with enhanced activity. Electrochimica Acta, 2014, 137, 504-510.	2.6	46
420	A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorganic Chemistry Frontiers, 2017, 4, 840-844.	3.0	46
421	CoS ₂ Nanoparticles-Embedded N-Doped Carbon Nanobox Derived from ZIF-67 for Electrocatalytic N ₂ -to-NH ₃ Fixation under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 29-33.	3.2	46
422	Greatly Facilitated Two-Electron Electroreduction of Oxygen into Hydrogen Peroxide over TiO ₂ by Mn Doping. ACS Applied Materials & Interfaces, 2021, 13, 46659-46664.	4.0	46
423	A gradient hexagonal-prism Fe ₃ Se ₄ @SiO ₂ @C configuration as a highly reversible sodium conversion anode. Journal of Materials Chemistry A, 2022, 10, 4087-4099.	5.2	46
424	Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Research, 2020, 13, 2967-2972.	5.8	45
425	Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78, 60-69.	5.4	44
426	Topotactic Conversion of α-Fe ₂ O ₃ Nanowires into FeP as a Superior Fluorosensor for Nucleic Acid Detection: Insights from Experiment and Theory. Analytical Chemistry, 2017, 89, 2191-2195.	3.2	44
427	Hierarchical CoTe ₂ Nanowire Array: An Effective Oxygen Evolution Catalyst in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2018, 6, 4481-4485.	3.2	44
428	Fe-doped CoP nanosheet arrays: an efficient bifunctional catalyst for zinc–air batteries. Chemical Communications, 2018, 54, 7693-7696.	2.2	44
429	Greatly Improving Electrochemical N ₂ Reduction over TiO ₂ Nanoparticles by Iron Doping. Angewandte Chemie, 2019, 131, 18620-18624.	1.6	44
430	Enabling the electrocatalytic fixation of N ₂ to NH ₃ by C-doped TiO ₂ nanoparticles under ambient conditions. Nanoscale Advances, 2019, 1, 961-964.	2.2	44
431	Electrospun zirconia nanofibers for enhancing the electrochemical synthesis of ammonia by artificial nitrogen fixation. Journal of Materials Chemistry A, 2021, 9, 2145-2151.	5.2	44
432	Formation ofo-Phenylenediamine Oligomers and their Self-Assembly into One-Dimensional Structures in Aqueous Medium. Macromolecular Rapid Communications, 2005, 26, 1504-1508.	2.0	43

#	Article	IF	CITATIONS
433	Carboxyl functionalized mesoporous polymer: A novel peroxidase-like catalyst for H2O2 detection. Analytical Methods, 2011, 3, 1475.	1.3	43
434	Fabrication of Ni(OH)2 coated ZnO array for high-rate pseudocapacitive energy storage. Electrochimica Acta, 2013, 109, 252-255.	2.6	43
435	Polydopamine nanospheres: A biopolymer-based fluorescent sensing platform for DNA detection. Sensors and Actuators B: Chemical, 2014, 191, 567-571.	4.0	43
436	Holey graphene nanosheets: large-scale rapid preparation and their application toward highly-effective water cleaning. Nanoscale, 2014, 6, 11659-11663.	2.8	43
437	Threeâ€Dimensional Nickel–Borate Nanosheets Array for Efficient Oxygen Evolution at Nearâ€Neutral pH. Chemistry - A European Journal, 2017, 23, 6959-6963.	1.7	43
438	Cr ₃ C ₂ Nanoparticle-Embedded Carbon Nanofiber for Artificial Synthesis of NH ₃ through N ₂ Fixation under Ambient Conditions. ACS Applied Materials & Interfaces, 2019, 11, 35764-35769.	4.0	43
439	Photochemical preparation of fluorescent 2,3-diaminophenazine nanoparticles for sensitive and selective detection of Hg(II) ions. Sensors and Actuators B: Chemical, 2012, 171-172, 886-890.	4.0	42
440	MnO ₂ nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH ₃ synthesis applications. Chemical Communications, 2018, 54, 10340-10342.	2.2	41
441	Practical strategies for enhanced performance of anode materials in Na ⁺ /K ⁺ -ion batteries. Journal of Materials Chemistry A, 2021, 9, 7317-7335.	5.2	41
442	Co nanoparticle-decorated pomelo-peel-derived carbon enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chemical Communications, 2022, 58, 4259-4262.	2.2	40
443	Hematite nanorods array on carbon cloth as an efficient 3D oxygen evolution anode. Electrochemistry Communications, 2014, 49, 21-24.	2.3	39
444	Co-based nanowire films as complementary hydrogen- and oxygen-evolving electrocatalysts in neutral electrolyte. Catalysis Science and Technology, 2017, 7, 2689-2694.	2.1	39
445	FeMoO ₄ nanorod array: a highly active 3D anode for water oxidation under alkaline conditions. Inorganic Chemistry Frontiers, 2018, 5, 665-668.	3.0	39
446	Bioinspired Electrocatalyst for Electrochemical Reduction of N ₂ to NH ₃ in Ambient Conditions. ACS Applied Materials & Interfaces, 2020, 12, 2445-2451.	4.0	39
447	Coâ€MOF Nanosheet Arrays for Efficient Alkaline Oxygen Evolution Electrocatalysis. ChemNanoMat, 2021, 7, 906-909.	1.5	39
448	Cu nanoparticles decorated juncus-derived carbon for efficient electrocatalytic nitrite-to-ammonia conversion. Journal of Colloid and Interface Science, 2022, 624, 394-399.	5.0	39
449	In situ growth of nickel selenide nanowire arrays on nickel foil for methanol electro-oxidation in alkaline media. RSC Advances, 2015, 5, 87051-87054.	1.7	38
450	Monolithically integrated NiCoP nanosheet array on Ti mesh: An efficient and reusable catalyst in NaBH4 alkaline media toward on-demand hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 19028-19034.	3.8	38

#	Article	IF	CITATIONS
451	Electrochemical synthesis of ammonia by zirconia-based catalysts at ambient conditions. Applied Catalysis A: General, 2019, 581, 116-122.	2.2	38
452	La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition. Electrochimica Acta, 2019, 298, 106-111.	2.6	38
453	A MnS/FeS ₂ heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 24024-24035.	5.2	38
454	Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Research, 2022, 15, 3880-3885.	5.8	38
455	Microwave-assisted rapid synthesis of Pt/graphene nanosheet composites and their application for methanol oxidation. Journal of Nanoparticle Research, 2011, 13, 4731-4737.	0.8	37
456	Ambient electrocatalytic N ₂ reduction to NH ₃ by metal fluorides. Journal of Materials Chemistry A, 2019, 7, 17761-17765.	5.2	37
457	Benzoate Anions-Intercalated Layered Nickel Hydroxide Nanobelts Array: An Earth-Abundant Electrocatalyst with Greatly Enhanced Oxygen Evolution Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9625-9629.	3.2	36
458	WO ₃ Nanoarray: An Efficient Electrochemical Oxygen Evolution Catalyst Electrode Operating in Alkaline Solution. Inorganic Chemistry, 2017, 56, 14743-14746.	1.9	36
459	DyF ₃ : An Efficient Electrocatalyst for N ₂ Fixation to NH ₃ under Ambient Conditions. Chemistry - an Asian Journal, 2020, 15, 487-489.	1.7	36
460	One-dimensional conductive metal–organic framework nanorods: a highly selective electrocatalyst for the oxygen reduction to hydrogen peroxide. Journal of Materials Chemistry A, 2021, 9, 20345-20349.	5.2	36
461	Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100611.	2.9	36
462	Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst. Catalysis Science and Technology, 2012, 2, 711.	2.1	35
463	Carbon nitride dots can serve as an effective stabilizing agent for reduced graphene oxide and help in subsequent assembly with glucose oxidase into hybrids for glucose detection application. Electrochimica Acta, 2013, 95, 260-267.	2.6	35
464	A Ni ₃ N–Co ₃ N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection. Analytical Methods, 2018, 10, 1680-1684.	1.3	35
465	An Fe ₂ O ₃ nanoparticle-reduced graphene oxide composite for ambient electrocatalytic N ₂ reduction to NH ₃ . Inorganic Chemistry Frontiers, 2019, 6, 2682-2685.	3.0	35
466	Ni ₂ P Nanosheets on Carbon Cloth: An Efficient Flexible Electrode for Sodium-Ion Batteries. Inorganic Chemistry, 2019, 58, 6579-6583.	1.9	35
467	La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. Chinese Journal of Catalysis, 2021, 42, 1755-1762.	6.9	35
468	Remarkable enhancement of the alkaline oxygen evolution reaction activity of NiCo ₂ O ₄ by an amorphous borate shell. Inorganic Chemistry Frontiers, 2017, 4, 1546-1550.	3.0	34

#	Article	IF	CITATIONS
469	A FeCo ₂ O ₄ nanowire array enabled electrochemical nitrate conversion to ammonia. Chemical Communications, 2022, 58, 4480-4483.	2.2	34
470	CdS quantum dots as a fluorescent sensing platform for nucleic acid detection. Mikrochimica Acta, 2011, 175, 355-359.	2.5	33
471	One-pot synthesis of Au nanoparticles/reduced graphene oxide nanocomposites and their application for electrochemical H2O2, glucose, and hydrazine sensing. Gold Bulletin, 2014, 47, 3-8.	1.1	33
472	Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18626-18633.	5.2	33
473	Environmentally friendly Mn-alloyed core/shell quantum dots for high-efficiency photoelectrochemical cells. Journal of Materials Chemistry A, 2020, 8, 10736-10741.	5.2	33
474	Poly(m-Phenylenediamine) Nanospheres and Nanorods: Selective Synthesis and Their Application for Multiplex Nucleic Acid Detection. PLoS ONE, 2011, 6, e20569.	1.1	32
475	Nâ€Doped Carbonâ€Coated Tungsten Oxynitride Nanowire Arrays for Highly Efficient Electrochemical Hydrogen Evolution. ChemSusChem, 2015, 8, 2487-2491.	3.6	32
476	Core–Shell‧tructured NiS ₂ @Niâ€8 _i Nanoarray for Efficient Water Oxidation at Nearâ€Neutral pH. ChemCatChem, 2017, 9, 3138-3143.	1.8	32
477	Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. Journal of Colloid and Interface Science, 2021, 604, 319-326.	5.0	32
478	Boosting electrochemical nitrite–ammonia conversion properties by a Cu foam@Cu ₂ O catalyst. Chemical Communications, 2022, 58, 517-520.	2.2	32
479	Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Research, 2022, 15, 5032-5037.	5.8	32
480	A novel acid-driven, microwave-assisted, one-pot strategy toward rapid production of graphitic N-doped carbon nanoparticles-decorated carbon flakes from N,N-dimethylformamide and their application in removal of dye from water. RSC Advances, 2012, 2, 4632.	1.7	31
481	A Bunchâ€like Copper Oxide Nanowire Array as an Efficient, Durable, and Economical Catalyst for the Methanolysis of Ammonia Borane. ChemCatChem, 2018, 10, 710-715.	1.8	31
482	Coralloid Au enables high-performance Zn–CO ₂ battery and self-driven CO production. Journal of Materials Chemistry A, 2021, 9, 21024-21031.	5.2	31
483	Coordination polymer nanobelts for nucleic acid detection. Nanotechnology, 2011, 22, 195502.	1.3	30
484	CaMoO4 nanosheet arrays for efficient and durable water oxidation electrocatalysis under alkaline conditions. Chemical Communications, 2018, 54, 5066-5069.	2.2	30
485	A Br ^{â^{~,}} anion adsorbed porous Ag nanowire film: <i>in situ</i> electrochemical preparation and application toward efficient CO ₂ electroreduction to CO with high selectivity. Inorganic Chemistry Frontiers, 2018, 5, 2238-2241.	3.0	30
486	Recent advances in MoS ₂ -based materials for electrocatalysis. Chemical Communications, 2022, 58, 2259-2278.	2.2	30

#	Article	IF	CITATIONS
487	Electrostatic-Assembly-Driven Formation of Micrometer-Scale Supramolecular Sheets of (3-Aminopropyl)triethoxysilane(APTES)-HAuCl ₄ and Their Subsequent Transformation into Stable APTES Bilayer-Capped Gold Nanoparticles through a Thermal Process. Langmuir, 2010, 26, 6133-6135.	1.6	29
488	Application of Zeolitic Imidazolate Frameworkâ€8 Nanoparticles for the Fluorescenceâ€Enhanced Detection of Nucleic Acids. ChemPlusChem, 2012, 77, 23-26.	1.3	29
489	Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Advances, 2014, 4, 9061.	1.7	29
490	Co ₃ O ₄ Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization. Chemistry - A European Journal, 2017, 23, 15601-15606.	1.7	29
491	Cu ₃ Mo ₂ O ₉ Nanosheet Array as a High-Efficiency Oxygen Evolution Electrode in Alkaline Solution. Inorganic Chemistry, 2018, 57, 1220-1225.	1.9	29
492	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H ₂ O ₂ electrosynthesis in acidic media. Journal of Materials Chemistry A, 2021, 9, 21703-21707.	5.2	29
493	Coordination Polymer Nanobelts as an Effective Sensing Platform for Fluorescenceâ€enhanced Nucleic Acid Detection. Macromolecular Rapid Communications, 2011, 32, 899-904.	2.0	28
494	Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection. Nanotechnology, 2016, 27, 33LT01.	1.3	28
495	Electrochemical Hydrazine Oxidation Catalyzed by Iron Phosphide Nanosheets Array toward Energyâ€Efficient Electrolytic Hydrogen Production from Water. ChemistrySelect, 2017, 2, 3401-3407.	0.7	28
496	CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia. Chemical Communications, 2022, 58, 5901-5904.	2.2	28
497	Hydrothermal synthesis of ultra-highly concentrated, well-stable Ag nanoparticles and their application for enzymeless hydrogen peroxide detection. Journal of Nanoparticle Research, 2011, 13, 2689-2695.	0.8	27
498	Highly efficient and durable water oxidation in a near-neutral carbonate electrolyte electrocatalyzed by a core–shell structured NiO@Ni–Ci nanosheet array. Sustainable Energy and Fuels, 2017, 1, 1287-1291.	2.5	27
499	Nanostructured Bromide-Derived Ag Film: An Efficient Electrocatalyst for N2Reduction to NH3under Ambient Conditions. Inorganic Chemistry, 2018, 57, 14692-14697.	1.9	27
500	Synergistic electrocatalytic N ₂ reduction using a PTCA nanorod–rGO hybrid. Journal of Materials Chemistry A, 2019, 7, 12446-12450.	5.2	27
501	Self-supported Ni ₃ S ₂ @Ni ₂ P/MoS ₂ heterostructures on nickel foam for an outstanding oxygen evolution reaction and efficient overall water splitting. Dalton Transactions, 2021, 50, 15094-15102.	1.6	27
502	High-Efficiency Electrosynthesis of Ammonia with Selective Reduction of Nitrate in Neutral Media Enabled by Self-Supported Mn ₂ CoO ₄ Nanoarray. ACS Applied Materials & Interfaces, 2022, 14, 33242-33247.	4.0	27
503	Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route. Journal of Colloid and Interface Science, 2005, 290, 130-133.	5.0	26
504	Oneâ€Step Hydrothermal Synthesis of Ag Nanoparticle Decorated Submicrometerâ€Scale Spherical AgBr Colloids: A Highly Efficient Visible Light Plasmonic Photocatalyst for Degradation of Organic Dyes. Particle and Particle Systems Characterization, 2013, 30, 67-71.	1.2	26

#	Article	IF	CITATIONS
505	Porous NiTe2 nanosheet array: An effective electrochemical sensor for glucose detection. Sensors and Actuators B: Chemical, 2018, 274, 427-432.	4.0	26
506	Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions. Frontiers of Chemical Science and Engineering, 2018, 12, 467-472.	2.3	26
507	Highly Selective Electrochemical Reduction of CO ₂ to Alcohols on an FeP Nanoarray. Angewandte Chemie, 2020, 132, 768-772.	1.6	26
508	A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands. New Journal of Chemistry, 2020, 44, 17849-17853.	1.4	26
509	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 10677-10681.	1.6	26
510	High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions. Journal of Colloid and Interface Science, 2022, 616, 261-267.	5.0	26
511	Enhancing Electrocatalytic NO Reduction to NH ₃ by the CoS Nanosheet with Sulfur Vacancies. Inorganic Chemistry, 2022, 61, 8096-8102.	1.9	26
512	Ternary Nanocomposites of Porphyrin, Angular Au Nanoparticles and Reduced Graphene Oxide: Photocatalytic Synthesis and Enhanced Photocurrent Generation. ChemCatChem, 2012, 4, 1079-1083.	1.8	25
513	Cobalt Carbonate Hydroxide Nanowire Array on Ti Mesh: An Efficient and Robust 3D Catalyst for Onâ€Đemand Hydrogen Generation from Alkaline NaBH ₄ Solution. Chemistry - A European Journal, 2016, 22, 14831-14835.	1.7	25
514	3D hierarchical CuO/Co ₃ O ₄ core–shell nanowire array on copper foam for on-demand hydrogen generation from alkaline NaBH ₄ solution. RSC Advances, 2016, 6, 88846-88850.	1.7	25
515	Enhanced electrocatalytic N ₂ -to-NH ₃ fixation by ZrS ₂ nanofibers with a sulfur vacancy. Chemical Communications, 2020, 56, 14031-14034.	2.2	25
516	Magnetron sputtering enabled synthesis of nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2020, 8, 20260-20285.	5.2	25
517	Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. ACS Applied Materials & Interfaces, 2021, 13, 30693-30702.	4.0	25
518	High-performance electrochemical nitrate reduction to ammonia under ambient conditions using NiFe ₂ O ₄ nanosheet arrays. Inorganic Chemistry Frontiers, 2022, 9, 3392-3397.	3.0	25
519	A novel application of porphyrin nanoparticles as an effective fluorescent assay platform for nucleic acid detection. RSC Advances, 2011, 1, 36.	1.7	24
520	Novel Use of Poly(3,4-ethylenedioxythiophene) Nanoparticles for Fluorescent Nucleic Acid Detection. ACS Combinatorial Science, 2012, 14, 191-196.	3.8	24
521	Novel synthesis of Au nanoparticles using fluorescent carbon nitride dots as photocatalyst. Gold Bulletin, 2012, 45, 61-67.	1.1	24
522	Self-standing cobalt oxide nanosheet array: An monolithic catalyst for effective hydrolysis of NaBH4 in alkaline media. International Journal of Hydrogen Energy, 2017, 42, 30639-30645.	3.8	24

#	Article	IF	CITATIONS
523	Hexagonal boron nitride nanosheet as an effective nanoquencher for the fluorescence detection of microRNA. Chemical Communications, 2021, 57, 8039-8042.	2.2	24
524	2D Vanadium Carbide (MXene) for Electrochemical Synthesis of Ammonia Under Ambient Conditions. Catalysis Letters, 2021, 151, 3516-3522.	1.4	23
525	Large-scale synthesis of coordination polymer microdendrites and their application as a sensing platform for fluorescent DNA detection. RSC Advances, 2011, 1, 725.	1.7	22
526	A Novel Single-Labeled Fluorescent Oligonucleotide Probe for Mercury(II) Ion Detection: Using the Inherent Quenching of Deoxyguanosines. Journal of Fluorescence, 2011, 21, 1049-1052.	1.3	22
527	Electrochemical Synthesis of Ammonia Based on a Perovskite LaCrO 3 Catalyst. ChemCatChem, 2020, 12, 731-735.	1.8	22
528	Unusual electrochemical N ₂ reduction activity in an earth-abundant iron catalyst <i>via</i> phosphorous modulation. Chemical Communications, 2020, 56, 731-734.	2.2	22
529	Titanium silicalite-1 zeolite microparticles for enzymeless H2O2 detection. Analyst, The, 2011, 136, 2037.	1.7	21
530	Environmentally Friendly Photocatalytic Synthesis of Porphyrin/Ag Nanoparticles/Reduced Graphene Oxide Ternary Nanohybrids Having Superior Catalytic Activity. ChemPlusChem, 2012, 77, 545-550.	1.3	21
531	Anion-exchange synthesis of a nanoporous crystalline CoB ₂ O ₄ nanowire array for high-performance water oxidation electrocatalysis in borate solution. Nanoscale, 2017, 9, 12343-12347.	2.8	21
532	Oxygenâ€Doped Porous Carbon Nanosheet for Efficient N ₂ Fixation to NH ₃ at Ambient Conditions. ChemistrySelect, 2019, 4, 3547-3550.	0.7	21
533	Iron-Doped MoO ₃ Nanosheets for Boosting Nitrogen Fixation to Ammonia at Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 7142-7151.	4.0	21
534	Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. Journal of Applied Electrochemistry, 2014, 44, 1165-1170.	1.5	20
535	A 3D FeOOH nanotube array: an efficient catalyst for ammonia electrosynthesis by nitrite reduction. Chemical Communications, 2022, 58, 5160-5163.	2.2	20
536	BCNO nanoparticles: A novel highly efficient fluorosensor for ultrarapid detection of Cu2+. Sensors and Actuators B: Chemical, 2014, 194, 492-497.	4.0	19
537	Cobalt phosphide nanowall arrays supported on carbon cloth: an efficient monolithic non-noble-metal hydrogen evolution catalyst. Nanotechnology, 2016, 27, 475702.	1.3	19
538	Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: An effective strategy to greatly improve discrimination ability toward single-base mismatch. Biosensors and Bioelectronics, 2011, 27, 167-171.	5.3	18
539	Mesoporous carbon microparticles as a novel fluorescent sensing platform for thrombin detection. Biosensors and Bioelectronics, 2011, 26, 3876-3880.	5.3	18
540	Self-supported spinel FeCo2O4nanowire array: an efficient non-noble-metal catalyst for the hydrolysis of NaBH4toward on-demand hydrogen generation. Nanotechnology, 2016, 27, 46LT03.	1.3	18

#	Article	IF	CITATIONS
541	Electrostatic-Assembly-Driven Formation of Supramolecular Rhombus Microparticles and Their Application for Fluorescent Nucleic Acid Detection. PLoS ONE, 2011, 6, e18958.	1.1	18
542	Synthesis of a MnO ₂ Nanosheet/Graphene Flake Composite and Its Application as a Supercapacitor having High Rate Capability. ChemPlusChem, 2012, 77, 872-876.	1.3	17
543	Facile synthesis of MWCNTs/Ag3PO4: novel photocatalysts with enhanced photocatalytic activity under visible light. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
544	Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation. Nanotechnology, 2016, 27, 44LT02.	1.3	17
545	Fe ₂ Ni ₂ N nanosheet array: an efficient non-noble-metal electrocatalyst for non-enzymatic glucose sensing. Nanotechnology, 2017, 28, 365503.	1.3	17
546	Enhanced Electrochemical N ₂ Reduction to NH ₃ on Reduced Graphene Oxide by Tannic Acid Modification. ACS Sustainable Chemistry and Engineering, 2019, 7, 14368-14372.	3.2	17
547	A Cr-FeOOH@Ni–P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. Nanoscale, 2021, 13, 17003-17010.	2.8	17
548	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
549	A MoN nanosheet array supported on carbon cloth as an efficient electrochemical sensor for nitrite detection. Analyst, The, 2019, 144, 5378-5380.	1.7	16
550	Ambient electrochemical N ₂ reduction to NH ₃ under alkaline conditions enabled by a layered K ₂ Ti ₄ O ₉ nanobelt. Chemical Communications, 2019, 55, 7546-7549.	2.2	16
551	Structured Polyaniline: An Efficient and Durable Electrocatalyst for the Nitrogen Reduction Reaction in Acidic Media. ChemElectroChem, 2019, 6, 2215-2218.	1.7	16
552	Numerical simulation of solid oxide fuel cells comparing different electrochemical kinetics. International Journal of Energy Research, 2021, 45, 12980-12995.	2.2	16
553	Electrodepositing ultra-thin Ni(OH) ₂ amorphous film on Ni ₂ P nanosheets array: an efficient strategy toward greatly enhanced alkaline hydrogen evolution reaction. New Journal of Chemistry, 2018, 42, 11285-11288.	1.4	16
554	Poly(2,3-diaminonaphthalene) microspheres as a novel quencher for fluorescence-enhanced nucleic acid detection. Analyst, The, 2011, 136, 2221.	1.7	15
555	Rectangular Coordination Polymer Nanoplates: Large-Scale, Rapid Synthesis and Their Application as a Fluorescent Sensing Platform for DNA Detection. PLoS ONE, 2012, 7, e30426.	1.1	15
556	Single‧tranded DNAâ€Mediated Immobilization of Graphene on a Gold Electrode for Sensitive and Selective Determination of Dopamine. ChemPlusChem, 2012, 77, 19-22.	1.3	15
557	Replacing oxygen evolution with sodium sulfide electro-oxidation toward energy-efficient electrochemical hydrogen production: Using cobalt phosphide nanoarray as a bifunctional catalyst. International Journal of Hydrogen Energy, 2017, 42, 26289-26295.	3.8	15
558	Nanowire of WP as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2019, 25, 971-975.	1.7	15

#	Article	IF	CITATIONS
559	In Situ Derived Bi Nanoparticles Confined in Carbon Rods as an Efficient Electrocatalyst for Ambient N ₂ Reduction to NH ₃ . Inorganic Chemistry, 2021, 60, 7584-7589.	1.9	15
560	Co–NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia. Chemical Communications, 2022, 58, 3787-3790.	2.2	15
561	Tetracyanoquinodimethane nanoparticles as an effective sensing platform for fluorescent nucleic acid detection. Analytical Methods, 2011, 3, 1051.	1.3	14
562	Fluorescence-Enhanced Potassium Ions Detection Based on Inherent Quenching Ability of Deoxyguanosines and K+-Induced Conformational Transition of G-Rich ssDNA from Duplex to G-Quadruplex Structures. Journal of Fluorescence, 2011, 21, 1841-1846.	1.3	14
563	3D shell-core structured NiCu-OH@Cu(OH)2 nanorod: A high-performance catalytic electrode for non-enzymatic glucose detection. Journal of Electroanalytical Chemistry, 2020, 876, 114477.	1.9	14
564	Zinc doped Fe2O3 for boosting Electrocatalytic Nitrogen Fixation to ammonia under mild conditions. International Journal of Hydrogen Energy, 2021, 46, 14331-14337.	3.8	14
565	Facile electrochemical fabrication of magnetic Fe3O4 for electrocatalytic synthesis of ammonia used for hydrogen storage application. International Journal of Hydrogen Energy, 2021, 46, 24128-24134.	3.8	14
566	Electrocatalytic two-electron oxygen reduction over nitrogen doped hollow carbon nanospheres. Chemical Communications, 2022, 58, 5025-5028.	2.2	14
567	Morphology and size-controllable preparation of silver nanostructures through a wet-chemical route at room temperature. Inorganic Materials, 2010, 46, 679-682.	0.2	13
568	Nanoporous molybdenum carbide nanowires: a novel sensing platform for DNA detection. Journal of Materials Chemistry B, 2015, 3, 7173-7176.	2.9	13
569	Self-supported cobalt phosphate nanoarray with pseudocapacitive behavior: An efficient 3D anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2020, 848, 156285.	2.8	13
570	Oxidationâ€etching induced morphology regulation of Cu catalysts for highâ€performance electrochemical <scp>N₂</scp> reduction. EcoMat, 2020, 2, e12026.	6.8	13
571	Monodisperse Cu Cluster-Loaded Defective ZrO ₂ Nanofibers for Ambient N ₂ Fixation to NH ₃ . ACS Applied Materials & Interfaces, 2021, 13, 40724-40730.	4.0	13
572	A three-dimensional CoNi-MOF nanosheet array-based immunosensor for sensitive monitoring of human chorionic gonadotropin with core–shell ZnNi-MOF@Nile Blue nanotags. Analyst, The, 2020, 145, 8097-8103.	1.7	13
573	Enhanced electrocatalytic nitrate reduction to ammonia using plasmaâ€induced oxygen vacancies in CoTiO _{3 âr' <i>x</i>} nanofiber. , 2022, 1, 6-13.		13
574	Analysis of electromagnetic pulses generation from laser coupling with polymer targets: Effect of metal content in target. Matter and Radiation at Extremes, 2020, 5, .	1.5	12
575	Self-supported Cu(OH) ₂ @Co ₂ CO ₃ (OH) ₂ core–shell nanowire array as a robust catalyst for ammonia-borane hydrolysis. Nanotechnology, 2017, 28, 045606.	1.3	11
576	Ni foam-supported NiCoP nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Chinese Journal of Catalysis, 2019, 40, 1405-1407.	6.9	11

#	Article	IF	CITATIONS
577	Oneâ€&tep Preparation of Cobaltâ€Nanoparticleâ€Embedded Carbon for Effective Water Oxidation Electrocatalysis. ChemElectroChem, 2019, 6, 1996-1999.	1.7	11
578	Progress in the use of electrospun nanofiber electrodes for solid oxide fuel cells: a review. Reviews in Chemical Engineering, 2020, 36, 879-931.	2.3	11
579	Fe(III) grafted MoO3 nanorods for effective electrocatalytic fixation of atmospheric N2 to NH3. International Journal of Hydrogen Energy, 2022, 47, 3550-3555.	3.8	11
580	Polypyrrole colloidal nanospheres as an effective fluorescent sensing platform for DNA detection. Synthetic Metals, 2011, 161, 1766-1770.	2.1	10
581	Carbon nanobelts as a novel sensing platform for fluorescence-enhanced DNA detection. Analyst, The, 2014, 139, 2318.	1.7	10
582	The synthesis of highly active carbon dot-coated gold nanoparticles <i>via</i> the room-temperature <i>in situ</i> carbonization of organic ligands for 4-nitrophenol reduction. RSC Advances, 2020, 10, 19419-19424.	1.7	10
583	Highly Efficient Na+ Storage in Uniform Thorn Ball-Like α-MnSe/C Nanospheres. Acta Metallurgica Sinica (English Letters), 2021, 34, 373-382.	1.5	10
584	Bamboo-like nitrogen-doped carbon nanotubes toward fluorescence recovery assay for DNA detection. Sensors and Actuators B: Chemical, 2015, 206, 37-42.	4.0	9
585	Enhancing electromagnetic radiations by a pre-ablation laser during laser interaction with solid target. Physics of Plasmas, 2020, 27, .	0.7	9
586	Enhanced electrocatalytic performance of TiO ₂ nanoparticles by Pd doping toward ammonia synthesis under ambient conditions. Chemical Communications, 2022, 58, 3214-3217.	2.2	9
587	Synthesis and characterization of CulnS2 nanoflowers. Colloid Journal, 2010, 72, 282-285.	0.5	8
588	Temperature control strategy for polymer electrolyte fuel cells. International Journal of Energy Research, 2020, 44, 4352-4365.	2.2	8
589	Detection of single-stranded nucleic acids by hybridization of probe oligonucleotides on polystyrene nanospheres and subsequent release and recovery of fluorescence. RSC Advances, 2011, 1, 1318.	1.7	7
590	Formation of [Ru(bpy) ₃] ²⁺ â€Containing Microstructures Induced by Electrostatic Assembly and Their Application in Solid‧tate Detection of Electrochemiluminescence. Chemistry - an Asian Journal, 2007, 2, 1137-1141.	1.7	6
591	SnO ₂ nanorod: An efficient non-noble-metal electrocatalyst for non-enzymatic H ₂ O ₂ sensing. Materials Research Express, 2019, 6, 065055.	0.8	6
592	Analysis of Thermal Stress in a Solid Oxide Fuel Cell Due to the Sulfur Poisoning Interface of the Electrolyte and Cathode. Energy & amp; Fuels, 2021, 35, 2674-2682.	2.5	6
593	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie, 0, , .	1.6	6
594	Carbon nanoparticles-induced formation of polyaniline nanofibers and their subsequent decoration with Ag nanoparticles for nonenzymatic H2O2 detection. Russian Journal of Electrochemistry, 2014, 50, 95-99.	0.3	5

#	Article	IF	CITATIONS
595	Microwave-assisted one-pot synthesis of Ag NPs/C and its application in H2O2 and glucose detection. Chemical Research in Chinese Universities, 2016, 32, 433-436.	1.3	5
596	Multi-layered g-C3N4 as a Fluorescent Probe for Hg2+ Detection. Journal of Fluorescence, 2022, 32, 1755-1759.	1.3	5
597	Polyacetylene nanoparticles-based preparation of polyaniline nanofibers. Journal of Nanoparticle Research, 2011, 13, 471-477.	0.8	4
598	Biomimetic Assembly of a Polydopamine Layer on Graphene as an Electron Gate for Fluorescent MicroRNA Detection in Living Cells. ChemBioChem, 2020, 21, 801-806.	1.3	4
599	YF ₃ : a nanoflower-like catalyst for efficient nitrogen fixation to ammonia under ambient conditions. Catalysis Science and Technology, 2021, 11, 6750-6754.	2.1	4
600	Electrocatalytic H ₂ O ₂ production <i>via</i> two-electron O ₂ reduction by Mo-doped TiO ₂ nanocrystallines. Catalysis Science and Technology, 2021, 11, 6970-6974.	2.1	4
601	A Novel Single Fluorophore-Labeled Double-Stranded Oligonucleotide Probe for Fluorescence-Enhanced Nucleic Acid Detection Based on the Inherent Quenching Ability of Deoxyguanosine Bases and Competitive Strand-Displacement Reaction. Journal of Fluorescence, 2012, 22. 43-46.	1.3	3
602	Preparation of graphene platelet-Ru(phen) 3 2+ assemblies and their application in electrochemiluminescence detection. Russian Journal of Electrochemistry, 2013, 49, 1092-1096.	0.3	3
603	In Situ Formation of a 3D Amorphous Cobalt―Borate Nanoarray: An Efficient Nonâ€Noble Metal Catalytic Electrode for Nonâ€Enzyme Glucose Detection. ChemistrySelect, 2018, 3, 10580-10584.	0.7	3
604	Ag@TiO 2 as an Efficient Electrocatalyst for N 2 Fixation to NH 3 under Ambient Conditions. ChemistrySelect, 2021, 6, 5271-5274.	0.7	3
605	Electrodeposition of Amorphous Feâ^'P Shell on Co(OH)F Nanowire Arrays for Boosting Oxygen Evolution Electrocatalysis in Alkaline Media. ChemNanoMat, 2022, 8, .	1.5	3
606	Application of 3,4,9,10-perylenetetracarboxylic diimide microfibers as a fluorescent sensing platform for biomolecular detection. Analytica Chimica Acta, 2011, 702, 109-113.	2.6	2
607	2,4,6-Tris (2-pyridyl)-1,3,5-triazine Nanobelts as an Effective Fluorescent Sensing Platform for DNA Detection. Journal of Nanoscience and Nanotechnology, 2012, 12, 2089-2093.	0.9	2
608	Performance experimental data of a polymer electrolyte fuel cell considering the variation of the relative humidity of reactants gases. Data in Brief, 2019, 27, 104727.	0.5	2
609	Constructing hydrogen-bonding microenvironment for boosting CO2 to CH4. Chem Catalysis, 2021, 1, 974-976.	2.9	2
610	Intense Electromagnetic Pulses Generated From kJ-Laser Interacting With Hohlraum Targets. IEEE Transactions on Nuclear Science, 2022, 69, 2027-2036.	1.2	2
611	Supramolecular microrods can be prepared by mixing aqueous Ru(NH3)6Cl3 and K3Fe(CN)6 solutions at room temperature. Colloid Journal, 2010, 72, 141-144.	0.5	1
612	Solution self-assembly-based route towards hexagonal microdisks at room temperature. Inorganic Materials, 2010, 46, 472-475.	0.2	1

#	Article	IF	CITATIONS
613	Fe-nitrilotriacetic acid coordination polymer nanowires: an effective sensing platform for fluorescence-enhanced nucleic acid detection. Nanotechnology, 2017, 28, 075101.	1.3	1
614	Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters. Data in Brief, 2019, 27, 104688.	0.5	1
615	Macromol. Rapid Commun. 12/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0
616	Electrodeposition-based controllabe fabrication of novel Pd nanotextured microelectrodes. Russian Journal of Electrochemistry, 2012, 48, 1135-1139.	0.3	0
617	Nanotextured au microelectrodes: Electrodeposition-based fabrication and their cyclic voltammograms study. Russian Journal of Electrochemistry, 2012, 48, 89-92.	0.3	0
618	7,7,8,8-tetracyanoquinodimethane microsheets for hydrogen peroxide reduction. Russian Journal of Electrochemistry, 2013, 49, 1097-1100.	0.3	0