
Babak Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1642298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics, 2018, 12, 584-597.	1.5	242
2	Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 2020, 237, 106145.	2.4	177
3	Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theoretical and Applied Climatology, 2018, 133, 1119-1131.	1.3	134
4	Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theoretical and Applied Climatology, 2019, 138, 1471-1480.	1.3	95
5	A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran. Theoretical and Applied Climatology, 2019, 137, 1257-1269.	1.3	88
6	Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena, 2021, 198, 105024.	2.2	80
7	Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature. Geoderma, 2019, 353, 152-171.	2.3	75
8	Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrological Sciences Journal, 2020, 65, 1738-1751.	1.2	75
9	Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling. Water Resources Management, 2020, 34, 3387-3409.	1.9	60
10	Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 2021, 244, 106622.	2.4	57
11	Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models. Environmental Science and Pollution Research, 2021, 28, 65752-65768.	2.7	51
12	Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh. Environmental Science and Pollution Research, 2021, 28, 34450-34471.	2.7	49
13	Simulation of Titicaca Lake Water Level Fluctuations Using Hybrid Machine Learning Technique Integrated with Grey Wolf Optimizer Algorithm. Water (Switzerland), 2020, 12, 3015.	1.2	48
14	Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	46
15	A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 2021, 7, .	1.0	46
16	Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm. Information Processing in Agriculture, 2018, 5, 465-476.	2.9	45
17	IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Scientific Reports, 2022, 12, .	1.6	44
18	Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils. Environmental Science and Pollution Research, 2020, 27, 13131-13141.	2.7	41

Вавак Монаммаді

#	Article	IF	CITATIONS
19	A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods. ISPRS International Journal of Geo-Information, 2020, 9, 701.	1.4	39
20	A novel hybrid dragonfly optimization algorithm for agricultural drought prediction. Stochastic Environmental Research and Risk Assessment, 2021, 35, 2459-2477.	1.9	39
21	Development of Bio-Inspired- and Wavelet-Based Hybrid Models for Reconnaissance Drought Index Modeling. Water Resources Management, 2021, 35, 4127-4147.	1.9	38
22	Hybrid model to improve the river streamflow forecasting utilizing multi-layer perceptron-based intelligent water drop optimization algorithm. Soft Computing, 2020, 24, 18039-18056.	2.1	34
23	New hybrid nature-based algorithm to integration support vector machine for prediction of soil cation exchange capacity. Soft Computing, 2021, 25, 13451-13464.	2.1	34
24	Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence. Journal of Hydrology, 2022, 609, 127774.	2.3	33
25	A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model. Theoretical and Applied Climatology, 2020, 142, 349-367.	1.3	32
26	Implementing novel hybrid models to improve indirect measurement of the daily soil temperature: Elman neural network coupled with gravitational search algorithm and ant colony optimization. Measurement: Journal of the International Measurement Confederation, 2020, 165, 108127.	2.5	30
27	Developing hybrid time series and artificial intelligence models for estimating air temperatures. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1189-1204.	1.9	30
28	Using the MODIS Sensor for Snow Cover Modeling and the Assessment of Drought Effects on Snow Cover in a Mountainous Area. Remote Sensing, 2020, 12, 3437.	1.8	26
29	ENN-SA: A novel neuro-annealing model for multi-station drought prediction. Computers and Geosciences, 2020, 145, 104622.	2.0	22
30	Development of Boosted Machine Learning Models for Estimating Daily Reference Evapotranspiration and Comparison with Empirical Approaches. Water (Switzerland), 2021, 13, 3489.	1.2	20
31	Comparison of machine learning and process-based SWAT model in simulating streamflow in the Upper Indus Basin. Applied Water Science, 2022, 12, .	2.8	20
32	Invasive weed optimization-based adaptive neuro-fuzzy inference system hybrid model for sediment transport with a bed deposit. Journal of Cleaner Production, 2020, 276, 124267.	4.6	19
33	A new hybrid model based on relevance vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation. Environmental Science and Pollution Research, 2021, 28, 32564-32579.	2.7	18
34	Letter to the editor "Estimation of sodium adsorption ratio indicator using data mining methods: a case study in Urmia Lake basin, Iran―by Mohammad Taghi Sattari, Arya Farkhondeh, and John Patrick Abraham. Environmental Science and Pollution Research, 2019, 26, 10439-10440.	2.7	17
35	A spatiotemporal teleconnection study between Peruvian precipitation and oceanic oscillations. Quaternary International, 2020, 565, 1-11.	0.7	17
36	Performance Analysis of Daily Global Solar Radiation Models in Peru by Regression Analysis. Atmosphere, 2021, 12, 389.	1.0	17

Вавак Монаммаді

#	Article	IF	CITATIONS
37	Predicting total phosphorus levels as indicators for shallow lake management. Ecological Indicators, 2019, 107, 105664.	2.6	16
38	Prediction of soil cation exchange capacity using enhanced machine learning approaches in the southern region of the Caspian Sea. Ain Shams Engineering Journal, 2023, 14, 101876.	3.5	14
39	"Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through genetic algorithm in Punjab, Pakistan―by Asmat Ullah, Nasrin Salehnia, Sohrab Kolsoumi, Ashfaq Ahmad, Tasneem Khaliq. Ecological Indicators. 2019. 101. 973-974.	2.6	13
40	Estimation of the organic carbon content by the pattern recognition method. Communications in Soil Science and Plant Analysis, 2018, 49, 2143-2154.	0.6	12
41	Assessing the potential and hydrological usefulness of the CHIRPS precipitation dataset over a complex topography in Pakistan. Hydrological Sciences Journal, 2021, 66, 1664-1684.	1.2	12
42	Letter to the Editor "Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China―by Xiangying Xu, Ping Gao, Xinkai Zhu, Wenshan Guo, Jinfeng Ding, Chunyan Li, Min Zhu, Xuanwei Wu. Ecological Indicators, 2019, 103, 493.	2.6	11
43	Application of ERA-Interim, empirical models, and an artificial intelligence-based model for estimating daily solar radiation. Ain Shams Engineering Journal, 2022, 13, 101498.	3.5	11
44	Establishing Coupled Models for Estimating Daily Dew Point Temperature Using Nature-Inspired Optimization Algorithms. Hydrology, 2022, 9, 9.	1.3	11
45	Improving generalisation capability of artificial intelligence-based solar radiation estimator models using a bio-inspired optimisation algorithm and multi-model approach. Environmental Science and Pollution Research, 2022, 29, 27719-27737.	2.7	10
46	Incorporating Rainwater Harvesting Systems in Iran's Potable Water-Saving Scheme by Using a GIS-Simulation Based Decision Support System. Water (Switzerland), 2020, 12, 752.	1.2	9
47	Soil moisture estimation using novel bio-inspired soft computing approaches. Engineering Applications of Computational Fluid Mechanics, 2022, 16, 826-840.	1.5	8
48	Letter to the editor "comparing artificial intelligence techniques for chlorophyll-a prediction in US lakes― Environmental Science and Pollution Research, 2020, 27, 22131-22134.	2.7	6
49	Credibility of design rainfall estimates for drainage infrastructures: extent of disregard in Nigeria and proposed framework for practice. Natural Hazards, 0, , 1.	1.6	5
50	Application of Machine Learning and Remote Sensing in Hydrology. Sustainability, 2022, 14, 7586.	1.6	4
51	Letter to the editor "Generating electrical demand time series applying SRA technique to complement NAR and sARIMA models―by Jorge L. Tena GarcÃa, Erasmo Cadenas Calderón, Eduardo Rangel Heras, Christian Morales Ontiveros. Energy Efficiency, 2020, 13, 157-158.	1.3	3
52	Estimation of Soil Temperature Based on Meteorological Parameters by the HYBRID INVASIVE Weed Optimization Algorithm Model. IOP Conference Series: Earth and Environmental Science, 2020, 428, 012059.	0.2	3
53	Letter to the editor "Modeling daily suspended sediment load using improved support vector machine model and genetic algorithm― Environmental Science and Pollution Research, 2020, 27, 17425-17426.	2.7	2
54	Evaluating the impact of the environment on depleting groundwater resources: a case study from a semi-arid and arid climatic region. Hydrological Sciences Journal, 2022, 67, 791-805.	1.2	2