Manuel Scotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1642134/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Thinning-based models in the analysis of integer-valued time series: a review. Statistical Modelling, 2015, 15, 590-618.	0.5	116
2	Application of the r largest-order statistics for long-term predictions of significant wave height. Coastal Engineering, 2004, 51, 387-394.	1.7	110
3	Modelling uncertainty in long-term predictions of significant wave height. Ocean Engineering, 2001, 28, 329-342.	1.9	89
4	The Structure of Climate Variability Across Scales. Reviews of Geophysics, 2020, 58, e2019RG000657.	9.0	71
5	Quantitating progression in ALS. Neurology, 2005, 64, 1783-1785.	1.5	59
6	Bayesian inference for long-term prediction of significant wave height. Coastal Engineering, 2007, 54, 393-400.	1.7	51
7	Bivariate binomial autoregressive models. Journal of Multivariate Analysis, 2014, 125, 233-251.	0.5	51
8	Integer-Valued Self-Exciting Threshold Autoregressive Processes. Communications in Statistics - Theory and Methods, 2012, 41, 2717-2737.	0.6	49
9	Summarising changes in air temperature over Central Europe by quantile regression and clustering. Natural Hazards and Earth System Sciences, 2011, 11, 3227-3233.	1.5	46
10	Clinical and neurophysiological evaluation of progression in amyotrophic lateral sclerosis. Muscle and Nerve, 2003, 28, 630-633.	1.0	43
11	Integer-valued autoregressive processes with periodic structure. Journal of Statistical Planning and Inference, 2010, 140, 1529-1541.	0.4	42
12	Modelling the long-term time series of significant wave height with non-linear threshold models. Coastal Engineering, 2000, 40, 313-327.	1.7	41
13	Self-exciting threshold binomial autoregressive processes. AStA Advances in Statistical Analysis, 2016, 100, 369-400.	0.4	41
14	Neurophysiological markers in familial amyloid polyneuropathy patients: Early changes. Clinical Neurophysiology, 2008, 119, 1082-1087.	0.7	31
15	F-Waves and the corticospinal lesion in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2002, 3, 131-136.	1.4	30
16	Air pollution and emergency admissions for cardiorespiratory diseases in Lisbon (Portugal). Quimica Nova, 2010, 33, 337-344.	0.3	30
17	Clinical patterns in progressive muscular atrophy (PMA): A prospective study. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2007, 8, 296-299.	2.3	28
18	Reproducibility of neurophysiological and myometric measurement in the ulnar nerve-abductor digiti minimi system. Muscle and Nerve, 2001, 24, 1391-1395.	1.0	26

MANUEL SCOTTO

#	Article	IF	CITATIONS
19	Trends in ozone concentrations in the Iberian Peninsula by quantile regression and clustering. Atmospheric Environment, 2012, 56, 184-193.	1.9	25
20	Clustering Time Series of Sea Levels: Extreme Value Approach. Journal of Waterway, Port, Coastal and Ocean Engineering, 2010, 136, 215-225.	0.5	22
21	Model-based clustering of Baltic sea-level. Applied Ocean Research, 2009, 31, 4-11.	1.8	18
22	Additive outliers in INAR(1) models. Statistical Papers, 2012, 53, 935-949.	0.7	18
23	Comparing generalized Pareto models fitted to extreme observations: an application to the largest temperatures in Spain. Stochastic Environmental Research and Risk Assessment, 2014, 28, 1221-1233.	1.9	18
24	Innovational Outliers in INAR(1) Models. Communications in Statistics - Theory and Methods, 2010, 39, 3343-3362.	0.6	17
25	Extremes of integer-valued moving average sequences. Test, 2010, 19, 359-374.	0.7	16
26	Technical efficiency with state-contingent production frontiers using maximum entropy estimators. Journal of Productivity Analysis, 2014, 41, 131-140.	0.8	16
27	A full ARMA model for counts with bounded support and its application to rainy-days time series. Stochastic Environmental Research and Risk Assessment, 2018, 32, 2495-2514.	1.9	16
28	Extremes of Some Sub-Sampled Time Series. Journal of Time Series Analysis, 2003, 24, 579-590.	0.7	15
29	Extreme value and cluster analysis of European daily temperature series. Journal of Applied Statistics, 2011, 38, 2793-2804.	0.6	15
30	Primary lateral sclerosis: Predicting functional outcome. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 141-145.	1.1	14
31	The max-INAR(1) model for count processes. Test, 2018, 27, 850-870.	0.7	13
32	Area burned in Portugal over recent decades: an extreme value analysis. International Journal of Wildland Fire, 2014, 23, 812.	1.0	12
33	Spontaneous baroreceptor reflex sensitivity for risk stratification of heart failure patients: optimal cut-off and age effects. Clinical Science, 2015, 129, 1163-1172.	1.8	12
34	Prediction of extreme ozone levels in Barcelona, Spain. Environmental Monitoring and Assessment, 2005, 100, 23-32.	1.3	11
35	Optimal Alarm Systems for Count Processes. Communications in Statistics - Theory and Methods, 2008, 37, 3054-3076.	0.6	11
36	Cross-entropy estimation in technical efficiency analysis. Journal of Mathematical Economics, 2014, 54, 124-130.	0.4	9

MANUEL SCOTTO

#	Article	IF	CITATIONS
37	On the theory of periodic multivariate INAR processes. Statistical Papers, 2021, 62, 1291-1348.	0.7	9
38	Extremes of sub-sampled integer-valued moving average models with heavy-tailed innovations. Statistics and Probability Letters, 2003, 63, 97-105.	0.4	8
39	On the Choice of the Ridge Parameter: A Maximum Entropy Approach. Communications in Statistics Part B: Simulation and Computation, 2010, 39, 1628-1638.	0.6	8
40	Morphological controls and statistical modelling of boulder transport by extreme storms. Marine Geology, 2020, 426, 106216.	0.9	8
41	Extremes of a class of deterministic sub-sampled processes with applications to stochastic difference equations. Stochastic Processes and Their Applications, 2005, 115, 417-434.	0.4	7
42	Investigating PM10 episodes using levoglucosan as tracer. Air Quality, Atmosphere and Health, 2018, 11, 61-68.	1.5	7
43	On the asymptotic location of high values of a stationary sequence. Statistics and Probability Letters, 2002, 60, 475-482.	0.4	6
44	Wavelet-Based Clustering of Sea Level Records. Mathematical Geosciences, 2016, 48, 149-162.	1.4	6
45	Periodic INAR(1) Models with Skellam-Distributed Innovations. Lecture Notes in Computer Science, 2019, , 64-78.	1.0	6
46	Insights on the trend of the Novel Coronavirus 2019 series in some Small Island Developing States: A Thinning-based Modelling Approach. AEJ - Alexandria Engineering Journal, 2021, 60, 2535-2550.	3.4	6
47	Association between respiratory hospital admissions and air quality in Portugal: A count time series approach. PLoS ONE, 2021, 16, e0253455.	1.1	6
48	Extremes of deterministic sub-sampled moving averages with heavy-tailed innovations. Applied Stochastic Models in Business and Industry, 2003, 19, 303-313.	0.9	5
49	A Periodic Bivariate Integer-Valued Autoregressive Model. CIM Series in Mathematical Sciences, 2015, , 455-477.	0.4	5
50	Investigating ozone episodes in Portugal: a wavelet-based approach. Air Quality, Atmosphere and Health, 2016, 9, 775-783.	1.5	5
51	On the Extremal Behaviour of Generalised Periodic Sub-Sampled Moving Average Models with Regularly Varying Tails. Extremes, 2004, 7, 149-160.	0.5	4
52	The Role of the Atmospheric Aerosol in Weather Forecasts for the Iberian Peninsula: Investigating the Direct Effects Using the WRF-Chem Model. Atmosphere, 2021, 12, 288.	1.0	4
53	Integer-Valued APARCH Processes. Contributions To Statistics, 2016, , 189-202.	0.2	3
54	Binary Auto-Regressive Geometric Modelling in a DNA Context. Journal of the Royal Statistical Society Series C: Applied Statistics, 2017, 66, 253-271.	0.5	3

MANUEL SCOTTO

#	Article	IF	CITATIONS
55	The max-BARMA models for counts with bounded support. Statistics and Probability Letters, 2018, 143, 28-36.	0.4	3
56	Extreme heat events in the Iberia Peninsula from extreme value mixture modeling of ERA5-Land air temperature. Weather and Climate Extremes, 2022, 36, 100448.	1.6	3
57	Extremes of Volterra series expansions with heavy-tailed innovations. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, 106-122.	0.6	2
58	Regularization with Maximum Entropy and Quantum Electrodynamics: The Merg(E) Estimators. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 1143-1157.	0.6	2
59	A wavelet-based approach applied to suspended particulate matter time series in Portugal. Air Quality, Atmosphere and Health, 2016, 9, 847-859.	1.5	2
60	A General Class of Estimators for the Linear Regression Model Affected by Collinearity and Outliers. Communications in Statistics Part B: Simulation and Computation, 2010, 39, 981-993.	0.6	1
61	Wavelets-based clustering of air quality monitoring sites. Environmental Monitoring and Assessment, 2015, 187, 694.	1.3	1
62	Euro-Cordex Regional Projection Models: What Kind of Agreement for Europe?. Mathematical Geosciences, 2019, 51, 1021-1035.	1.4	1
63	Predictions of Extreme Values of Significant Wave Height. , 2003, , .		1
64	On the Statistical Choice of Extreme Domains of Attraction in Long-Term Predictions of Significant Wave Height. , 2006, , .		1
65	A note on the asymptotic distribution of the maxima in disaggregated time-series models. Statistics and Probability Letters, 2003, 65, 127-137.	0.4	0
66	On the non-negative first-order exponential bilinear time series model. Statistics and Probability Letters, 2006, 76, 931-938.	0.4	0
67	On the extremes of a class of non-linear processes with heavy tailed innovations. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 2012-2023.	0.6	0
68	Models for Integer-Valued Time Series. , 2014, , 199-244.		0
69	On modelling RR tails in heart rate variability studies: An extreme value analysis. , 2015, , .		0
70	Bivariate models for time series of counts: A comparison study between PBINAR models and dynamic factor models. Communications in Statistics Part B: Simulation and Computation, 2019, , 1-15.	0.6	0
71	On the extremes of the max-INAR(1) process for time series of counts. Communications in Statistics - Theory and Methods, 0, , 1-19.	0.6	0