Zsuzsanna Tabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1642096/publications.pdf

Version: 2024-02-01

57	5,734	31 h-index	49
papers	citations		g-index
57	57	57	8233
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Macrophage Plasticity and Function in the Lung Tumour Microenvironment Revealed in 3D Heterotypic Spheroid and Explant Models. Biomedicines, 2021, 9, 302.	1.4	9
2	Stromaâ€derived extracellular vesicle mRNA signatures inform histological nature of prostate cancer. Journal of Extracellular Vesicles, 2021, 10, e12150.	5.5	10
3	Rab35-dependent extracellular nanovesicles are required for induction of tumour supporting stroma. Nanoscale, 2018, 10, 8547-8559.	2.8	20
4	A single centre phase II trial to assess the immunological activity of TroVax® plus pemetrexed/cisplatin in patients with malignant pleural mesothelioma â \in 6 the SKOPOS trial. Oncolmmunology, 2018, 7, e1457597.	2.1	8
5	Cancer stem cells as targets for immunotherapy. Immunology, 2018, 153, 304-314.	2.0	82
6	Prostaglandin E ₂ -mediated adenosinergic effects on CD14 ⁺ cells: Self-amplifying immunosuppression in cancer. Oncolmmunology, 2017, 6, e1268308.	2.1	15
7	Dominant immunosuppression of dendritic cell function by prostateâ€cancerâ€derived exosomes. Journal of Extracellular Vesicles, 2017, 6, 1368823.	5.5	106
8	Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamerâ€based protein array. Journal of Extracellular Vesicles, 2016, 5, 31209.	5. 5	58
9	Prostate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes. Oncotarget, 2016, 7, 20124-20139.	0.8	27
10	Cross-talk between cancer-initiating cells and immune cells: considerations for combination therapies. Annals of Translational Medicine, 2016, 4, S56-S56.	0.7	6
11	Cross-Presentation of the Oncofetal Tumor Antigen 5T4 from Irradiated Prostate Cancer Cells—A Key Role for Heat-Shock Protein 70 and Receptor CD91. Cancer Immunology Research, 2015, 3, 678-688.	1.6	37
12	Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene, 2015, 34, 290-302.	2.6	367
13	Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget, 2015, 6, 715-731.	0.8	227
14	Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14 ⁺ PD-L1 ⁺ phenotype in prostate cancer. Oncolmmunology, 2014, 3, e955331.	2.1	59
15	Proteomics Analysis of Cancer Exosomes Using a Novel Modified Aptamer-based Array (SOMAscanTM) Platform. Molecular and Cellular Proteomics, 2014, 13, 1050-1064.	2.5	136
16	Enhancement of T Cell Responses as a Result of Synergy between Lower Doses of Radiation and T Cell Stimulation. Journal of Immunology, 2014, 192, 3101-3110.	0.4	25
17	Decreased HPV-specific T cell responses and accumulation of immunosuppressive influences in oropharyngeal cancer patients following radical therapy. Cancer Immunology, Immunotherapy, 2013, 62, 1821-1830.	2.0	18
18	Overexpression and potential targeting of the oncofoetal antigen 5T4 in malignant pleural mesothelioma. Lung Cancer, 2012, 77, 312-318.	0.9	29

#	Article	IF	Citations
19	Cancer Exosomes Express CD39 and CD73, Which Suppress T Cells through Adenosine Production. Journal of Immunology, 2011, 187, 676-683.	0.4	453
20	Resistance of CD45RAâ^' T Cells to Apoptosis and Functional Impairment, and Activation of Tumor-Antigen Specific T Cells during Radiation Therapy of Prostate Cancer. Journal of Immunology, 2010, 185, 1330-1339.	0.4	34
21	Positive and negative immune components in the tumour environment in malignant pleural mesothelioma: Tumor-antigen-specific T-cells vs. immunosuppressive effects. Lung Cancer, 2010, 67, S20-S21.	0.9	O
22	Cancer Exosomes Trigger Fibroblast to Myofibroblast Differentiation. Cancer Research, 2010, 70, 9621-9630.	0.4	685
23	ILâ€12 and type I IFN response of neonatal myeloid DC to human CMV infection. European Journal of Immunology, 2009, 39, 2789-2799.	1.6	53
24	A clinical grade poly I:C-analogue (Ampligen \hat{A}^{\otimes}) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine, 2009, 27, 107-115.	1.7	111
25	Can urinary exosomes act as treatment response markers in prostate cancer?. Journal of Translational Medicine, 2009, 7, 4.	1.8	259
26	Cancer Vaccines. , 2009, , 365-397.		0
27	SV40 large T antigenâ€specific human T cell memory responses. Journal of Medical Virology, 2008, 80, 1497-1504.	2.5	3
28	Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. Journal of Immunological Methods, 2008, 335, 98-105.	0.6	119
29	Human Tumor-Derived Exosomes Down-Modulate NKG2D Expression. Journal of Immunology, 2008, 180, 7249-7258.	0.4	465
30	Cancer Vaccines and Immune Monitoring (An Overview)., 2008,, 129-159.		0
31	Human Tumor-Derived Exosomes Selectively Impair Lymphocyte Responses to Interleukin-2. Cancer Research, 2007, 67, 7458-7466.	0.4	446
32	Challenges for cancer vaccine development. Advanced Drug Delivery Reviews, 2006, 58, 902-915.	6.6	33
33	Human cancer vaccines. Advanced Drug Delivery Reviews, 2006, 58, 899-901.	6.6	2
34	Induction of heat shock proteins in B-cell exosomes. Journal of Cell Science, 2005, 118, 3631-3638.	1.2	402
35	Recovery of CD8+ T-Cell Function During Systemic Chemotherapy in Advanced Ovarian Cancer. Cancer Research, 2005, 65, 7000-7006.	0.4	72
36	Exosomes and the MICA-NKG2D system in cancer. Blood Cells, Molecules, and Diseases, 2005, 34, 206-213.	0.6	125

#	Article	IF	Citations
37	Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cells, Molecules, and Diseases, 2005, 35, 149-152.	0.6	94
38	The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer. Vaccine, 2005, 23, 2374-2378.	1.7	52
39	Assessment of immunological competence and SV40 specific recall immunity in malignant pleural mesothelioma. Vaccine, 2005, 23, 2399-2402.	1.7	3
40	Impaired Lymphoid Chemokine-Mediated Migration due to a Block on the Chemokine Receptor Switch in Human Cytomegalovirus-Infected Dendritic Cells. Journal of Virology, 2004, 78, 3046-3054.	1.5	58
41	Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood, 2002, 99, 2913-2921.	0.6	205
42	Human Cytomegalovirus pp65- and Immediate Early 1 Antigen-Specific HLA Class I-Restricted Cytotoxic T Cell Responses Induced by Cross-Presentation of Viral Antigens. Journal of Immunology, 2001, 166, 5695-5703.	0.4	83
43	Apoptosis of $\hat{Vl^2}8.2+T$ lymphocytes in the spinal cord during recovery from experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. Journal of the Neurological Sciences, 1996, 139, 1-6.	0.3	27
44	Corticosteroid treatment of experimental autoimmune encephalomyelitis in the Lewis rat results in loss of \hat{V}^2 8.2+ and myelin basic protein-reactive cells from the spinal cord, with increased total T-cell apoptosis but reduced apoptosis of \hat{V}^2 8.2+ cells. Journal of Neuroimmunology, 1996, 70, 93-101.	1.1	44
45	Apoptosis of V beta 8.2+ T lymphocytes in the spinal cord during recovery from experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. Journal of the Neurological Sciences, 1996, 139, 1-6.	0.3	10
46	The proximal peripheral nervous system is a major site of demyelination in experimental autoimmune encephalomyelitis induced in the Lewis rat by a myelin basic protein-specific T cell clone. Acta Neuropathologica, 1995, 89, 527-531.	3.9	26
47	Antigen-specific down-regulation of myelin basic protein-reactive T cells during spontaneous recovery from experimental autoimmune encephalomyelitis: further evidence of apoptotic deletion of autoreactive T cells in the central nervous system. International Immunology, 1995, 7, 967-973.	1.8	62
48	The proximal peripheral nervous system is a major site of demyelination in experimental autoimmune encephalomyelitis induced in the Lewis rat by a myelin basic protein-specific T cell clone. Acta Neuropathologica, 1995, 89, 527-531.	3.9	0
49	Apoptotic elimination of $V\hat{l}^2$ 8.2+ cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of $V\hat{l}^2$ 8.2+ encephalitogenic T cells. European Journal of Immunology, 1994, 24, 2609-2617.	1.6	117
50	Selective elimination of $\hat{Vl^28.2+T}$ cells in the CNS by apoptosis during EAE induced by MBP-specific $\hat{Vl^28.2+T}$ cells. Journal of Neuroimmunology, 1994, 54, 189.	1,1	0
51	Antigen-specific downregulation of the T cell response associated with T cell apoptosis in the CNS during EAE. Journal of Neuroimmunology, 1994, 54, 200.	1.1	0
52	Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. Journal of Immunology, 1990, 144, 3980-6.	0.4	301
53	CD4+ and CD8+ T Cells in Murine Virus Infections: Experiments with Lymphocytic Choriomeningitis and Influenza., 1989,, 897-905.		0
54	Virus-specific memory T cells are Pgp-1+ and can be selectively activated with phorbol ester and calcium lonophore. Cellular Immunology, 1988, 113, 268-277.	1.4	62

ZSUZSANNA TABI

#	Article	IF	CITATION
55	Lethal vaccinia infection in cyclophosphamide-suppressed mice is associated with decreased expression of Thy-1, Lyt-2 and L3T4 and diminished IL-2 production in surviving T cells. Immunology, 1988, 63, 423-9.	2.0	7
56	Phenotypic analysis of the inflammatory exudate in murine lymphocytic choriomeningitis Journal of Experimental Medicine, 1987, 165, 1539-1551.	4.2	74
57	Oral Progenitor Cell Line-Derived Small Extracellular Vesicles as a Treatment for Preferential Wound Healing Outcome. Stem Cells Translational Medicine, 0, , .	1.6	8