Srimanta Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1641781/publications.pdf

Version: 2024-02-01

279487 315357 1,547 45 23 38 citations h-index g-index papers 46 46 46 1625 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Applied Water Science, 2017, 7, 4117-4131.	2.8	207
2	Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environmental Geology, 2008, 55, 731-739.	1.2	160
3	Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environmental Monitoring and Assessment, 2010, 165, 169-177.	1.3	121
4	Geochemistry of groundwater, Burdwan District, West Bengal, India. Environmental Geology, 2008, 53, 1271-1282.	1.2	89
5	Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, 2014, 145, 190-206.	1.5	82
6	Application of geospatial modelling technique in delineation of fluoride contamination zones within Dwarka Basin, Birbhum, India. Geoscience Frontiers, 2017, 8, 1105-1114.	4.3	52
7	Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeology Journal, 2018, 26, 899-922.	0.9	50
8	Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater. Journal of Hazardous Materials, 2010, 178, 588-595.	6.5	48
9	Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: A comparative approach between vulnerability models. Water Science, 2018, 32, 44-66.	0.5	48
10	Mechanism of activation of the Lanta Khola landslide in Sikkim Himalayas. Landslides, 2010, 7, 135-147.	2.7	44
11	Sources evaluation and ecological risk assessment of heavy metals accumulated within a natural stream of Durgapur industrial zone, India, by using multivariate analysis and pollution indices. Applied Water Science, 2019, 9, 1.	2.8	44
12	Fluoride-contaminated groundwater of Birbhum district, West Bengal, India: Interpretation of drinking and irrigation suitability and major geochemical processes using principal component analysis. Environmental Monitoring and Assessment, 2017, 189, 369.	1.3	43
13	Evaluation of landslide susceptibility in a hill city of Sikkim Himalaya with the perspective of hybrid modelling techniques. Annals of GIS, 2019, 25, 113-132.	1.4	36
14	Effect of air-borne heavy metals on the biochemical signature of tree species in an industrial region, with an emphasis on anticipated performance index. Chemistry and Ecology, 2011, 27, 381-392.	0.6	34
15	Inferring the fluoride hydrogeochemistry and effect of consuming fluoride-contaminated drinking water on human health in some endemic areas of Birbhum district, West Bengal. Environmental Geochemistry and Health, 2016, 38, 557-576.	1.8	33
16	Application of geospatial technologies for multi-hazard mapping and characterization of associated risk at local scale. Annals of GIS, 2018, 24, 33-46.	1.4	32
17	Geochemical and geostatistical appraisal of fluoride contamination: An insight into the Quaternary aquifer. Science of the Total Environment, 2018, 640-641, 406-418.	3.9	31
18	Prediction modelling of riverine landscape dynamics in the context of sustainable management of floodplain: a Geospatial approach. Annals of GIS, 2021, 27, 299-314.	1.4	31

#	Article	IF	Citations
19	An evaluation of irrigation water suitability in the Dwarka river basin through the use of GIS-based modelling. Environmental Earth Sciences, 2017, 76, 1.	1.3	30
20	Hydrochemical evaluation of Rangit river, Sikkim, India: using Water Quality Index and multivariate statistics. Environmental Earth Sciences, 2016, 75, 1.	1.3	29
21	Geospatial modelling of flood susceptibility pattern in a subtropical area of West Bengal, India. Environmental Earth Sciences, 2017, 76, 1.	1.3	28
22	Comparative evaluation of various approaches for landslide hazard zoning: a critical review in Indian perspectives. Spatial Information Research, 2017, 25, 389-398.	1.3	26
23	Delineation of potential fluoride contamination zones in Birbhum, West Bengal, India, using remote sensing and GIS techniques. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	25
24	Impact of industrial waste effluents on river Damodar adjacent to Durgapur industrial complex, West Bengal, India. Environmental Monitoring and Assessment, 2013, 185, 2083-2094.	1.3	24
25	Fluoride enrichment in an alluvial aquifer with its subsequent effect on human health in Birbhum district, West Bengal, India. Chemosphere, 2017, 168, 817-824.	4.2	22
26	Knowledge-driven method: a tool for landslide susceptibility zonation (LSZ)., 2023, 7, 1-15.		18
27	Ductile shearing, hydrous fluid channelling and high-pressure metamorphism along the basement-cover contact on Sikinos, Cyclades, Greece. Geological Society Special Publication, 2004, 224, 161-175.	0.8	17
28	Major ion chemistry and metal distribution in coal mine pit lake contaminated with industrial effluents: constraints of weathering and anthropogenic inputs. Environmental Earth Sciences, 2012, 67, 2053-2061.	1.3	17
29	Assessment of groundwater quality scenario in respect of fluoride and nitrate contamination in and around Gharbar village, Jharkhand, India. HydroResearch, 2019, 2, 60-68.	1.7	17
30	Fluoride hydrogeochemistry in alluvial aquifer: an implication to chemical weathering and ion-exchange phenomena. Environmental Earth Sciences, 2015, 73, 3537-3554.	1.3	16
31	Effects of metal stress on biochemical response of some aquatic macrophytes growing along an industrial waste discharge channel. Journal of Plant Interactions, 2010, 5, 91-99.	1.0	14
32	Assessment of manganese contamination in groundwater using frequency ratio (FR) modeling and GIS: a case study on Burdwan district, West Bengal, India. Modeling Earth Systems and Environment, 2018, 4, 161-174.	1.9	13
33	PHYTOREMEDIATION OF CADMIUM-CONTAMINATED SOIL BY BRASSICA SPECIES. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2001, 49, 351-360.	0.2	9
34	Linking LULC change with urban heat islands over 25 years: a case study of the urban-industrial city Durgapur, Eastern India. Journal of Spatial Science, 2020, 65, 501-518.	1.0	9
35	Comparative evaluation of water quality zonation within Dwarka River Basin, India. Hydrological Sciences Journal, 2018, 63, 583-595.	1.2	8
36	Search for potential iron contamination zones in Burdwan district: an approach through fuzzy logic. Sustainable Water Resources Management, 2019, 5, 1017-1031.	1.0	7

#	Article	IF	CITATIONS
37	Spatio-Temporal Variation and Futuristic Emission Scenario of Ambient Nitrogen Dioxide over an Urban Area of Eastern India Using GIS and Coupled AERMOD–WRF Model. PLoS ONE, 2017, 12, e0170928.	1.1	7
38	Temporal changes and depth wise variations in pit pond hydrochemistry contaminated with industrial effluents with special emphasis on metal distribution in water–sediment system. Journal of Hazardous Materials, 2010, 183, 125-131.	6.5	5
39	Introducing an irrigation water quality index (IWQI) based on the case study of the Dwarka River basin, Birbhum, West Bengal, India. Sustainable Water Resources Management, 2020, 6, 1.	1.0	5
40	Influences of boundary layer phenomena and meteorology on ambient air quality status of an urban area in eastern India. Atmosfera, 2018, 31, 69-86.	0.3	5
41	Rising Trend of Air Pollution and Its Decadal Consequences on Meteorology and Thermal Comfort Over Gangetic West Bengal, India. Environmental Challenges and Solutions, 2021, , 689-720.	0.5	4
42	Application of geospatial modeling in deciphering groundwater recharge site and structures in Paschim Medinipur district, India. Sustainable Water Resources Management, 2020, 6, 1.	1.0	3
43	CHAPTER 7. Fluoride Accumulation in Crops and Vegetables: Indian Perspectives. Food and Nutritional Components in Focus, 2015, , 117-139.	0.1	1
44	The Vulnerability of Human Population to Landslide Disaster: A Case Study of Sikkim Himalayas. Disaster Risk Reduction, 2022, , 319-333.	0.2	1
45	Mapping Groundwater Recharge Potential Zones Using GIS Approaches and Trend of Water Table Fluctuation in Birbhum District, West Bengal, India. Springer Hydrogeology, 2021, , 443-471.	0.1	O