

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1641614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimizing Living Material Delivery During the COVID-19 Outbreak. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6709-6719.	8.0	11
2	A Heterogeneous Access Metamodel for Efficient IoT Remote Sensing Observation Management: Taking Precision Agriculture as an Example. IEEE Internet of Things Journal, 2022, 9, 8616-8632.	8.7	5
3	Exploring metro vibrancy and its relationship with built environment: a cross-city comparison using multi-source urban data. Geo-Spatial Information Science, 2022, 25, 182-196.	5.3	12
4	RDC-SLAM: A Real-Time Distributed Cooperative SLAM System Based on 3D LiDAR. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 14721-14730.	8.0	19
5	A hierarchical approach for fine-grained urban villages recognition fusing remote and social sensing data. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102661.	2.8	10
6	Automatic Tunnel Crack Inspection Using an Efficient Mobile Imaging Module and a Lightweight CNN. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15190-15203.	8.0	23
7	Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction. Computers, Environment and Urban Systems, 2022, 94, 101776.	7.1	19
8	Sensing the Nighttime Economy–Housing Imbalance from a Mobile Phone Data Perspective: A Case Study in Shanghai. Remote Sensing, 2022, 14, 2738.	4.0	2
9	Real-Time Route Recommendations for E-Taxies Leveraging GPS Trajectories. IEEE Transactions on Industrial Informatics, 2021, 17, 3133-3142.	11.3	13
10	Scale Effect on Fusing Remote Sensing and Human Sensing to Portray Urban Functions. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 38-42.	3.1	16
11	A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data. International Journal of Geographical Information Science, 2021, 35, 116-134.	4.8	11
12	Understanding Ridesourcing Mobility and the Future of Electrification: A Comparative Study in Beijing. Journal of Urban Technology, 2021, 28, 217-236.	4.7	2
13	User-Generated Content and Its Applications in Urban Studies. Urban Book Series, 2021, , 523-539.	0.6	0
14	A heterogeneous key performance indicator metadata model for air quality monitoring in sustainable cities. Environmental Modelling and Software, 2021, 136, 104955.	4.5	2
15	Resolving urban mobility networks from individual travel graphs using massive-scale mobile phone tracking data. Cities, 2021, 110, 103077.	5.6	30
16	Identifying the Potential for Partial Integration of Private and Public Transportation. Sustainability, 2021, 13, 3424.	3.2	3
17	Prediction of human activity intensity using the interactions in physical and social spaces through graph convolutional networks. International Journal of Geographical Information Science, 2021, 35, 2489-2516.	4.8	25
18	A Pedestrian Network Construction System Based on Crowdsourced Walking Trajectories. IEEE Internet of Things Journal, 2021, 8, 7203-7213.	8.7	12

Wei Tu

#	Article	IF	CITATIONS
19	Segregation or integration? Exploring activity disparities between migrants and settled urban residents using human mobility data. Transactions in GIS, 2021, 25, 2791-2820.	2.3	13
20	Integrated environmental and human observations for smart cities. Environment and Planning B: Urban Analytics and City Science, 2021, 48, 1375-1379.	2.0	2
21	A global North-South division line for portraying urban development. IScience, 2021, 24, 102729.	4.1	17
22	Digital mapping of zinc in urban topsoil using multisource geospatial data and random forest. Science of the Total Environment, 2021, 792, 148455.	8.0	28
23	Collaboratively inspect large-area sewer pipe networks using pipe robotic capsules. , 2021, , .		1
24	Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1543-1559.	2.0	60
25	Optimizing Mixed Pedestrian-Vehicle Evacuation via Adaptive Network Reconfiguration. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 1023-1033.	8.0	7
26	OCD: Online Crowdsourced Delivery for On-Demand Food. IEEE Internet of Things Journal, 2020, 7, 6842-6854.	8.7	32
27	Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Computers, Environment and Urban Systems, 2020, 80, 101428.	7.1	113
28	DAPR-tree: a distributed spatial data indexing scheme with data access patterns to support Digital Earth initiatives. International Journal of Digital Earth, 2020, 13, 1656-1671.	3.9	10
29	Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 82-97.	11.1	105
30	A Novel Access Point Placement Method for WiFi Fingerprinting Considering Existing APs. IEEE Wireless Communications Letters, 2020, 9, 1799-1802.	5.0	12
31	An Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City. IEEE Access, 2020, 8, 52452-52465.	4.2	11
32	ls eye-level greening associated with the use of dockless shared bicycles?. Urban Forestry and Urban Greening, 2020, 51, 126690.	5.3	21
33	Employing waterborne autonomous vehicles for museum visits: a case study in Amsterdam. European Transport Research Review, 2020, 12, .	4.8	8
34	Profiling rapid urban transformation through urban mobility data in Shenzhen. , 2020, , 86-100.		0
35	Characterizing preferred motif choices and distance impacts. PLoS ONE, 2019, 14, e0215242.	2.5	16
36	Functional urban land use recognition integrating multi-source geospatial data and cross-correlations. Computers, Environment and Urban Systems, 2019, 78, 101374.	7.1	77

Wei Tu

#	Article	IF	CITATIONS
37	Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line based on nighttime light data and cellular automata. Applied Geography, 2019, 112, 102081.	3.7	61
38	Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing. Applied Energy, 2019, 250, 147-160.	10.1	59
39	Tracking and Simulating Pedestrian Movements at Intersections Using Unmanned Aerial Vehicles. Remote Sensing, 2019, 11, 925.	4.0	16
40	Unravel the landscape and pulses of cycling activities from a dockless bike-sharing system. Computers, Environment and Urban Systems, 2019, 75, 184-203.	7.1	132
41	A Novel Effective Indicator of Weighted Inter-City Human Mobility Networks to Estimate Economic Development. Sustainability, 2019, 11, 6348.	3.2	4
42	STIETR. , 2019, , .		2
43	A simple and direct method to analyse the influences of sampling fractions on modelling intra-city human mobility. International Journal of Geographical Information Science, 2019, 33, 618-644.	4.8	13
44	Spatial variations in urban public ridership derived from GPS trajectories and smart card data. Journal of Transport Geography, 2018, 69, 45-57.	5.0	146
45	Emerging social media data on measuring urban park use. Urban Forestry and Urban Greening, 2018, 31, 130-141.	5.3	93
46	Profiling the Spatial Structure of London: From Individual Tweets to Aggregated Functional Zones. ISPRS International Journal of Geo-Information, 2018, 7, 386.	2.9	10
47	Integrating Aerial and Street View Images for Urban Land Use Classification. Remote Sensing, 2018, 10, 1553.	4.0	97
48	A Graph Optimization-Based Indoor Map Construction Method via Crowdsourcing. IEEE Access, 2018, 6, 33692-33701.	4.2	23
49	Resolving Surface Displacements in Shenzhen of China from Time Series InSAR. Remote Sensing, 2018, 10, 1162.	4.0	26
50	Reliable Rescue Routing Optimization for Urban Emergency Logistics under Travel Time Uncertainty. ISPRS International Journal of Geo-Information, 2018, 7, 77.	2.9	17
51	Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data. Remote Sensing, 2018, 10, 141.	4.0	110
52	Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage. Journal of Transport Geography, 2018, 70, 78-90.	5.0	76
53	A spatial parallel heuristic approach for solving very largeâ€scale vehicle routing problems. Transactions in GIS, 2017, 21, 1130-1147.	2.3	14
54	Impacts of weather on public transport ridership: Results from mining data from different sources. Transportation Research Part C: Emerging Technologies, 2017, 75, 17-29.	7.6	135

Wei Tu

#	Article	IF	CITATIONS
55	Coupling mobile phone and social media data: a new approach to understanding urban functions and diurnal patterns. International Journal of Geographical Information Science, 2017, 31, 2331-2358.	4.8	200
56	A Robust Crowdsourcing-Based Indoor Localization System. Sensors, 2017, 17, 864.	3.8	51
57	Analyzing Risk Factors for Fatality in Urban Traffic Crashes: A Case Study of Wuhan, China. Sustainability, 2017, 9, 897.	3.2	15
58	Multi-Objective Emergency Material Vehicle Dispatching and Routing under Dynamic Constraints in an Earthquake Disaster Environment. ISPRS International Journal of Geo-Information, 2017, 6, 142.	2.9	12
59	Optimizing the locations of electric taxi charging stations: A spatial–temporal demand coverage approach. Transportation Research Part C: Emerging Technologies, 2016, 65, 172-189.	7.6	218
60	A Novel Spatial-Temporal Voronoi Diagram-Based Heuristic Approach for Large-Scale Vehicle Routing Optimization with Time Constraints. ISPRS International Journal of Geo-Information, 2015, 4, 2019-2044.	2.9	11
61	Inferring individual physical locations with social friendships. , 2015, , .		2
62	ALIMC: Activity Landmark-Based Indoor Mapping via Crowdsourcing. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2774-2785.	8.0	99
63	Activity Sequence-Based Indoor Pedestrian Localization Using Smartphones. IEEE Transactions on Human-Machine Systems, 2015, 45, 562-574.	3.5	122
64	A Spatio-Temporal Decision Support Framework for Large Scale Logistics Distribution in the Metropolitan Area. Advances in Geographic Information Science, 2015, , 193-206.	0.6	2
65	Spatiotemporal Critical Opportunity and Link Identification for Joint Participation Scheduling. , 2015, , 109-126.		0
66	Growth orientation of Cu–Sn IMC in Cu/Sn–3.5Ag/Cu– x Zn microbumps and Zn-doped solder joints. Materials Letters, 2014, 134, 184-186.	2.6	19
67	A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem. Transportation Research, Part E: Logistics and Transportation Review, 2014, 61, 84-97.	7.4	47
68	A Voronoi neighborhood-based search heuristic for distance/capacity constrained very large vehicle routing problems. International Journal of Geographical Information Science, 2013, 27, 741-764.	4.8	21
69	Spatiotemporal analysis of critical transportation links based on time geographic concepts: a case study of critical bridges in Wuhan, China. Journal of Transport Geography, 2012, 23, 44-59.	5.0	49
70	A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities. Journal of Transport Geography, 2011, 19, 623-634.	5.0	29
71	Exploring time varying shortest path of urban OD Pairs based on floating car data. , 2010, , .		8
72	COMPARISON OF URBAN HUMAN MOVEMENTS INFERRING FROM MULTI-SOURCE SPATIAL-TEMPORAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B2, 471-476.	0.2	2