Sa Hassanzadeh-Tabrizi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1641270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The solution plasma synthesis, characterisation, and antibacterial activities of dispersed CuO nanoparticles. Materials Technology, 2022, 37, 1220-1229.	3.0	16
2	Facile synthesis of Zn0.5Ni0.5Fe2O4/carbon nanocomposite for hyperthermia and drug delivery applications. Diamond and Related Materials, 2022, 125, 108993.	3.9	6
3	Poly(methyl methacrylate) bone cement, its rise, growth, downfall and future. Polymer International, 2021, 70, 1182-1201.	3.1	36
4	Synthesis of the novel CuAl2O4–Al2O3–SiO2 nanocomposites for the removal of pollutant dye and antibacterial applications. Research on Chemical Intermediates, 2021, 47, 599-614.	2.7	2
5	Novel synthesis of nickel ferrite magnetic nanoparticles by an inâ€liquid plasma. Journal of Materials Science: Materials in Electronics, 2021, 32, 10424-10442.	2.2	10
6	Optimization of magnesia sintering parameters fabricated by spark plasma sintering method for infrared transparency. Materials Research Express, 2021, 8, 065002.	1.6	0
7	Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications. Ceramics International, 2021, 47, 18167-18176.	4.8	55
8	Polyacrylamide gel synthesis, characterization, and optical properties of Co1-xNixCr2O4 spinel nanopigment. Journal of Sol-Gel Science and Technology, 2021, 99, 534-545.	2.4	6
9	Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: A review. International Journal of Biological Macromolecules, 2021, 184, 618-635.	7.5	27
10	Synthesis of NiFe2O4/Ag nanoparticles immobilized on mesoporous g-C3N4 sheets and application for degradation of antibiotics. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113398.	3.9	22
11	Two- stage synthesis of SnO2-Ag/MgFe2O4 nanocomposite for photocatalytic application. Surfaces and Interfaces, 2021, 26, 101326.	3.0	5
12	Synthesis of mesoporous CuFe2O4@SiO2 core-shell nanocomposite for simultaneous drug release and hyperthermia applications. Ceramics International, 2021, 47, 30287-30297.	4.8	38
13	Facile thermal synthesis of g–C ₃ N ₄ /ZnO nanocomposite with antibacterial properties for photodegradation of Methylene blue. Materials Research Express, 2021, 8, 125002.	1.6	16
14	Synthesis and Characterisation of semi-interpenetrating network of Polycaprolactone/polyethylene glycol diacrylate/zeolite-CuO as wound dressing. Materials Technology, 2020, 35, 290-299.	3.0	17
15	Synthesis, characterization, and in vitro toxicity evaluation of upconversion luminescence NaLuF ₄ :Yb ³⁺ /Tm ³⁺ nanoparticles suitable for medical applications. Journal of the Chinese Chemical Society, 2020, 67, 720-731.	1.4	8
16	Synthesis and characterization of nano-ceramic pigment Co _{0.5} Zn _{0.5} Al ₂ O ₄ via polyacrylamide gel method. Pigment and Resin Technology, 2020, 49, 189-195.	0.9	2
17	Synthesis and photoluminescence properties of nanoporous anodic aluminum oxide (NAAO): Sm3+ nanocomposite layer: Effect of anodizing parameters (time and voltage), Sm3+ concentrations, and annealing temperatures. Optical Materials, 2020, 102, 109821.	3.6	1
18	Mg _{0.5} Ni _{0.5} Fe ₂ O ₄ nanoparticles as heating agents for hyperthermia treatment. Journal of the American Ceramic Society, 2019, 102, 2752-2760.	3.8	11

#	Article	IF	CITATIONS
19	Nitrogen Fixation: Photo(electro)catalytic Nitrogen Fixation: Problems and Possibilities (Adv. Mater.) Tj ETQq1 1	0.784314 3.7	rg&T /Overio
20	Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Materials Science and Engineering C, 2019, 99, 83-95.	7.3	49
21	Multifunctional mesoporous magnetic Mg2SiO4–CuFe2O4 core-shell nanocomposite for simultaneous bone cancer therapy and regeneration. Ceramics International, 2019, 45, 19481-19488.	4.8	37
22	Synthesis of Fe2O3/Pt/Au nanocomposite immobilized on g-C3N4 for localized plasmon photocatalytic hydrogen evolution. Applied Surface Science, 2019, 489, 741-754.	6.1	51
23	Polycrystalline infrared-transparent MgO fabricated by spark plasma sintering. Ceramics International, 2019, 45, 18943-18950.	4.8	23
24	Design development of (Ba1-xCax)(Ti1-ySny)O3 lead-free piezo ceramic by two manufacturing methods of CSS and SPS, promising for delamination damage detection. Journal of Alloys and Compounds, 2019, 795, 197-206.	5.5	3
25	Photo(electro)catalytic Nitrogen Fixation: Problems and Possibilities. Advanced Materials Interfaces, 2019, 6, 1900091.	3.7	76
26	Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceramics International, 2019, 45, 14934-14942.	4.8	59
27	Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy. Wear, 2019, 424-425, 122-132.	3.1	32
28	Comparing Morphology and Corrosion Behavior of Nanostructured Coatings Obtained via Plasma Electrolytic Oxidation with Direct and Pulse Currents on Commercial Titanium Substrate. Surface Engineering and Applied Electrochemistry, 2019, 55, 667-678.	0.8	3
29	Electrophoretically deposited mesoporous magnesium silicate with ordered nanopores as an antibiotic-loaded coating on surface-modified titanium. Materials Science and Engineering C, 2019, 96, 765-775.	7.3	42
30	Chitosan/MWCNTs composite as bone substitute: Physical, mechanical, bioactivity, and biodegradation evaluation. Polymer Composites, 2019, 40, E1622.	4.6	53
31	Copperâ€substituted spinel Znâ€Mg ferrite nanoparticles as potential heating agents for hyperthermia. Journal of the American Ceramic Society, 2018, 101, 3649-3661.	3.8	34
32	Sol-gel synthesis and luminescence properties of Ba 2 SiO 4 :Sm 3+ nanostructured phosphors. Ceramics International, 2018, 44, 10169-10174.	4.8	27
33	Mechanochemical self-explosive synthesis and characterization of Mo-V2C nanocomposite. Ceramics International, 2018, 44, 5447-5452.	4.8	5
34	Synthesis of nanoporous Baghdadite by a modified sol-gel method and its structural and controlled release properties. Ceramics International, 2018, 44, 13951-13958.	4.8	19
35	Microemulsion synthesis of ZnO–ZnWO4 nanoparticles for superior photodegradation of organic dyes in water. Journal of Materials Science: Materials in Electronics, 2018, 29, 2384-2391.	2.2	21
36	Synthesis and Characterization of Folateâ€decorated Cobalt Ferrite Nanoparticles Coated with Poly(Ethylene Glycol) for Biomedical Applications. Journal of the Chinese Chemical Society, 2018, 65, 231-242.	1.4	19

#	Article	IF	CITATIONS
37	Microemulsion synthesis, optical and photocatalytic properties of vanadiumâ€doped nano ZnO. International Journal of Applied Ceramic Technology, 2018, 15, 479-488.	2.1	14
38	Sol-gel synthesis and characterization of TiO2-CdO-Ag nanocomposite with superior photocatalytic efficiency. Ceramics International, 2018, 44, 4292-4297.	4.8	37
39	Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method. Materials Chemistry and Physics, 2018, 205, 283-291.	4.0	38
40	Fabrication of Superhydrophobic Al5083 Aluminum Alloy for Marine Applications. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 899-908.	1.1	12
41	Sol–gel synthesis and photocatalytic activity of ZnO–Ag–Sm nanoparticles for water treatment. Journal of Materials Science: Materials in Electronics, 2018, 29, 10986-10991.	2.2	6
42	Surfactant-assisted sol–gel synthesis and characterization of hierarchical nanoporous merwinite with controllable drug release. Journal of Sol-Gel Science and Technology, 2018, 87, 618-625.	2.4	19
43	Low temperature synthesis of Cr7C3-V8C7-MgCr2O4 nanocomposite via a magnesiothermic-assisted mechanochemical method. Ceramics International, 2018, 44, 21437-21441.	4.8	1
44	Influence of modified CNT-Ag nanocomposite addition on photocatalytic degradation of methyl orange by mesoporous TiO ₂ . Inorganic and Nano-Metal Chemistry, 2017, 47, 1168-1174.	1.6	16
45	In situ reverse co-precipitation synthesis and magnetic properties of CuO/CuFe2O4 nanocomposite. Journal of Sol-Gel Science and Technology, 2017, 83, 124-131.	2.4	8
46	The effect of synthesis medium on structure and drug delivery behavior of CTAB-assisted sol–gel derived nanoporous calcium–magnesium–silicate. Journal of Sol-Gel Science and Technology, 2017, 83, 229-236.	2.4	22
47	Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surface and Coatings Technology, 2017, 321, 171-179.	4.8	103
48	Synthesis and characterization of Cu 0.3 Zn 0.5 Mg 0.2 Fe 2 O 4 nanoparticles as a magnetic drug delivery system. Journal of Magnetism and Magnetic Materials, 2017, 439, 67-75.	2.3	47
49	Synthesis, characterization, and magnetic properties of ZnO-ZnFe 2 O 4 nanoparticles with high photocatalytic activity. Journal of Magnetism and Magnetic Materials, 2017, 441, 98-104.	2.3	61
50	Synthesis and characterization of nano Ce doped ZnO/γ-Al2O3 with improved photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 9528-9534.	2.2	13
51	Spark plasma sintering of forsterite nanopowder and mechanical properties of sintered materials. Ceramics International, 2017, 43, 15714-15718.	4.8	14
52	ZnO–CdO nanocomposite: microemulsion synthesis and dye removal ability. Journal of Sol-Gel Science and Technology, 2017, 81, 475-482.	2.4	16
53	Effects of PACVD parameters including pulsed direct current and deposition time on nanostructured carbon coating deposited on carbon fiber fabrics. Materials and Design, 2016, 106, 184-194.	7.0	13
54	Synthesis of ZnO/CuO nanocomposite immobilized on γ-Al2O3 and application for removal of methyl orange. Applied Surface Science, 2016, 384, 237-243.	6.1	78

#	Article	IF	CITATIONS
55	In situ synthesis of vanadium carbide–copper nanocomposite by a modified mechanochemical combustion method. Ceramics International, 2016, 42, 9371-9374.	4.8	16
56	The high efficiency of Al2O3–SiO2–CuO nanocomposites as an adsorbent: synthesis and dye removal efficiency. Research on Chemical Intermediates, 2016, 42, 4999-5011.	2.7	13
57	Synthesis, functionalization, characterization, and in vitro evaluation of robust pH-sensitive CFNs–PA–CaCO ₃ . RSC Advances, 2016, 6, 84217-84230.	3.6	12
58	Ordered mesoporous magnesium silicate with uniform nanochannels as a drug delivery system: The effect of calcination temperature on drug delivery rate. Ceramics International, 2016, 42, 17185-17191.	4.8	48
59	Synthesis of SrAl2O4:Sm nanopowder using reverse microemulsion and polyacrylamide gel methods: a comparison study of size, structural and photoluminescence properties. Journal of Sol-Gel Science and Technology, 2016, 80, 560-566.	2.4	5
60	In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system. Materials Science and Engineering C, 2016, 68, 774-779.	7.3	106
61	Nanostructured CuAl2O4: Co-precipitation synthesis, optical and photocatalytic properties. Ceramics International, 2016, 42, 14121-14125.	4.8	52
62	Investigation on mechanochemical combustion behavior of Mg–V 2 O 5 –Co 3 O 4 -C reactive system to synthesize VC–Co nanocomposite powder. Ceramics International, 2016, 42, 7210-7215.	4.8	1
63	Fast mechanochemical combustion synthesis of nanostructured vanadium boride by a magnesiothermic reaction. Ceramics International, 2016, 42, 1812-1816.	4.8	20
64	Synthesis and magnetic properties of NiFe2â~'xSmxO4 nanopowder. Journal of Magnetism and Magnetic Materials, 2016, 410, 242-247.	2.3	45
65	Failure analysis of drill pipe: A review. Engineering Failure Analysis, 2016, 59, 605-623.	4.0	78
66	Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system. Materials Science and Engineering C, 2016, 58, 737-741.	7.3	47
67	MoO3 fibers and belts: Molten salt synthesis, characterization and optical properties. Ceramics International, 2015, 41, 10839-10843.	4.8	57
68	Microemulsion synthesis and magnetic properties of hydroxyapatite-encapsulated nano CoFe2O4. Journal of Magnetism and Magnetic Materials, 2015, 382, 182-187.	2.3	66
69	A designed magnetic CoFe2O4–hydroxyapatite core–shell nanocomposite for Zn(II) removal with high efficiency. Ceramics International, 2015, 41, 6844-6850.	4.8	53
70	Sol–gel synthesis of Mn2O3/Al2O3/SiO2 hybrid nanocomposite and application for removal of organic dye. Journal of Sol-Gel Science and Technology, 2015, 73, 9-13.	2.4	35
71	Fast synthesis of VC and V2C nanopowders by the mechanochemical combustion method. International Journal of Refractory Metals and Hard Materials, 2015, 51, 1-5.	3.8	21
72	A low temperature mechanochemical synthesis of nanostructured ZrC powder by a magnesiothermic reaction. Ceramics International, 2015, 41, 8397-8401.	4.8	22

#	Article	IF	CITATIONS
73	Effect of heat treatment on the size, structural and catalytic properties of Al2O3–CeO2 nanocomposite powder prepared by microemulsion method. Journal of Sol-Gel Science and Technology, 2015, 75, 360-365.	2.4	7
74	Synthesis and characterization of Al2O3–SiO2–MgO nanocomposite prepared by sol–gel process as an efficient catalyst for the Knoevenagel condensation of aldehydes with malononitrile. Research on Chemical Intermediates, 2015, 41, 6625-6633.	2.7	6
75	Microwave dielectric properties and chemical compatibility with silver electrode of Li2TiO3 ceramic with Li2O–ZnO–B2O3 glass additive. Physica B: Condensed Matter, 2015, 457, 57-61.	2.7	15
76	Reverse microemulsion synthesis and characterization of CaSnO3 nanoparticles. Ceramics International, 2014, 40, 9609-9613.	4.8	42
77	Low temperature cofirable Li2Zn3Ti4O12 microwave dielectric ceramic with Li2O–ZnO–B2O3 glass additive. Journal of Materials Science: Materials in Electronics, 2014, 25, 355-360.	2.2	26
78	Microwave dielectric properties of Li2ZnTi3O8 ceramics prepared by reaction-sintering process. Journal of Materials Science: Materials in Electronics, 2014, 25, 1117-1121.	2.2	22
79	Characterization of Ba2+-added alumina/cobalt nanoceramic pigment prepared by polyacrylamide gel method. Ceramics International, 2014, 40, 11877-11881.	4.8	18
80	Preparation of CoAl2O4 nanoblue pigment via polyacrylamide gel method. Powder Technology, 2014, 266, 236-239.	4.2	69
81	Influence of Mn 2 O 3 content on the textural and catalytic properties of Mn 2 O 3 /Al 2 O 3 /SiO 2 nanocatalyst. Ceramics International, 2014, 40, 16177-16181.	4.8	25
82	Reverse microemulsion synthesis of CeO2 nanopowder using polyoxyethylene(23)lauryl ether as a surfactant. Ceramics International, 2014, 40, 8687-8692.	4.8	38
83	A new temperature stable microwave dielectric ceramic with low-sintering temperature in Li2TiO3–Li2Zn3Ti4O12 system. Journal of Alloys and Compounds, 2014, 597, 161-166.	5.5	38
84	Effect of surfactants on the synthesis of Al2O3–CeO2 nanocomposite using a reverse microemulsion method. Ceramics International, 2014, 40, 4933-4937.	4.8	30
85	In-situ fabrication of Al2O3–SiC nanocomposites using B2O3 as sintering aid. Ceramics International, 2013, 39, 3931-3938.	4.8	9
86	Polyacrylamide gel synthesis and sintering of Mg 2 SiO 4 :Eu 3+ nanopowder. Ceramics International, 2013, 39, 6313-6317.	4.8	33
87	Synthesis and luminescence properties of YAG:Ce nanopowder prepared by the Pechini method. Advanced Powder Technology, 2012, 23, 324-327.	4.1	51
88	Synthesis and sintering of YAG:Eu nanopowder. Journal of the European Ceramic Society, 2012, 32, 2965-2969.	5.7	7
89	Optimization of the synthesis parameters of high surface area ceria nanopowder prepared by surfactant assisted precipitation method. Applied Surface Science, 2011, 257, 10595-10600.	6.1	27
90	Low temperature synthesis and luminescence properties of YAG: Eu nanopowders prepared by modified sol-gel method. Transactions of Nonferrous Metals Society of China, 2011, 21, 2443-2447.	4.2	32

#	Article	IF	CITATIONS
91	The Compaction, Sintering, and Mechanical Properties of <scp>Al₂O₃–CeO₂</scp> Composite Nanopowders. Journal of the American Ceramic Society, 2011, 94, 3488-3493.	3.8	6
92	Polymer-assisted synthesis and luminescence properties of MgAl2O4:Tb nanopowder. Optical Materials, 2011, 33, 1607-1609.	3.6	18
93	Modeling and optimization of densification of nanocrystalline Al2O3 powder prepared by a sol–gel method using response surface methodology. Journal of Sol-Gel Science and Technology, 2011, 57, 212-220.	2.4	8
94	Synthesis of high surface area Al2O3–CeO2 composite nanopowder via inverse co-precipitation method. Ceramics International, 2011, 37, 1251-1257.	4.8	25
95	Reverse precipitation synthesis and characterization of CeO2 nanopowder. Journal of Alloys and Compounds, 2010, 491, 499-502.	5.5	97
96	Sol–gel synthesis and characterization of Al2O3–CeO2 composite nanopowder. Journal of Alloys and Compounds, 2010, 494, 289-294.	5.5	26
97	Compressibility and sinterability of Al2O3–YAG nanocomposite powder synthesized by an aqueous sol–gel method. Journal of Alloys and Compounds, 2010, 506, 640-644.	5.5	18
98	Effect of cobalt oxide on the sintering and grain growth of Al2O3-YAG composite nanopowder. Science of Sintering, 2010, 42, 321-328.	1.4	4
99	Economical synthesis of Al2O3 nanopowder using a precipitation method. Materials Letters, 2009, 63, 2274-2276.	2.6	33
100	Hot pressing of nanocrystalline zinc oxide compacts: Densification and grain growth during sintering. Ceramics International, 2009, 35, 991-995.	4.8	34
101	Nanocrystalline ceramic coating on γ-TiAl by bipolar plasma electrolysis (effect of frequency, time and) Tj ETQq1	1	4 ₁ gBT /Ove
102	Effects of Milling and Calcination Temperature on the Compressibility and Sinterability of a Nanocrystalline Al2O3-Y3Al5O12Composite Powder. Journal of the American Ceramic Society, 2008, 91, 3546-3551.	3.8	24
103	Synthesis of an alumina–YAG nanopowder via sol–gel method. Journal of Alloys and Compounds, 2008, 456, 282-285.	5.5	73