Ruihao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1641102/publications.pdf

Version: 2024-02-01

22 papers 1,634 citations

16 h-index 677142 22 g-index

22 all docs 22 docs citations 22 times ranked 2603 citing authors

#	Article	IF	CITATIONS
1	Efficient, Hysteresisâ€Free, and Stable Perovskite Solar Cells with ZnO as Electronâ€Transport Layer: Effect of Surface Passivation. Advanced Materials, 2018, 30, 1705596.	21.0	363
2	Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films. Journal of the American Chemical Society, 2016, 138, 9919-9926.	13.7	249
3	High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO–ZnS Electron Transport Layer. Journal of the American Chemical Society, 2019, 141, 541-547.	13.7	189
4	Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. Journal of the American Chemical Society, 2019, 141, 6345-6351.	13.7	149
5	Etherâ€Soluble Cu ₅₃ Nanoclusters as an Effective Precursor of Highâ€Quality Cul Films for Optoelectronic Applications. Angewandte Chemie - International Edition, 2019, 58, 835-839.	13.8	115
6	Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules. Journal of the American Chemical Society, 2021, 143, 10624-10632.	13.7	101
7	Perfection of Perovskite Grain Boundary Passivation by Euâ€Porphyrin Complex for Overallâ€Stable Perovskite Solar Cells. Advanced Science, 2019, 6, 1802040.	11.2	65
8	Moisture-tolerant and high-quality \hat{l} ±-CsPbI ₃ films for efficient and stable perovskite solar modules. Journal of Materials Chemistry A, 2020, 8, 9597-9606.	10.3	62
9	Methylamine-Dimer-Induced Phase Transition toward MAPbl ₃ Films and High-Efficiency Perovskite Solar Modules. Journal of the American Chemical Society, 2020, 142, 6149-6157.	13.7	59
10	Crown Etherâ€Assisted Growth and Scaling Up of FACsPbI ₃ Films for Efficient and Stable Perovskite Solar Modules. Advanced Functional Materials, 2021, 31, 2008760.	14.9	50
11	Improving Efficiency and Stability of Perovskite Solar Cells by Modifying Mesoporous TiO ₂ –Perovskite Interfaces with Both Aminocaproic and Caproic acids. Advanced Materials Interfaces, 2017, 4, 1700897.	3.7	41
12	Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. Journal of Materials Chemistry A, 2019, 7, 26849-26857.	10.3	40
13	<i>N</i> -Methyl-2-pyrrolidone as an excellent coordinative additive with a wide operating range for fabricating high-quality perovskite films. Inorganic Chemistry Frontiers, 2019, 6, 2458-2463.	6.0	26
14	Maximizing the output power density enhancement of solid polymer electrolyte based-triboelectric nanogenerators via contact electrification-induced ionic polarization. Nano Energy, 2021, 90, 106616.	16.0	23
15	Chemical Insights into Interfacial Effects in Inorganic Nanomaterials. Advanced Materials, 2021, 33, e2006159.	21.0	22
16	Etherâ€Soluble Cu 53 Nanoclusters as an Effective Precursor of Highâ€Quality CuI Films for Optoelectronic Applications. Angewandte Chemie, 2018, 131, 845.	2.0	20
17	Beyond efficiency: phenothiazine, a new commercially viable substituent for hole transport materials in perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8593-8598.	5 . 5	15
18	Production of hydrogen-rich gas and multi-walled carbon nanotubes from ethanol decomposition over molybdenum modified Ni/MgO catalysts. Journal of Energy Chemistry, 2014, 23, 244-250.	12.9	14

Ruihao Chen

#	Article	lF	CITATION
19	Scalable Preparation of Highâ€Performance ZnO–SnO ₂ Cascaded Electron Transport Layer for Efficient Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100639.	5.8	13
20	One-pot template-free fabrication of ZnMn2O4 hollow microspheres as high-performance lithium-ion battery anodes. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	10
21	Intimate Interfacial Interaction between Aminoâ€Modified Ti ₅ Clusters and BiVO ₄ towards Efficient Photoelectrochemical Water Splitting. ChemNanoMat, 2019, 5, 1110-1114.	2.8	6
22	Light-Trapping Engineering for the Enhancements of Broadband and Spectra-Selective Photodetection by Self-Assembled Dielectric Microcavity Arrays. Nanoscale Research Letters, 2019, 14, 187.	5.7	2