
Adam V Maltese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1640047/publications.pdf Version: 2024-02-01

ADAM V MALTESE

#	Article	IF	CITATIONS
1	Spontaneous Mathematical Moments Between Caregiver and Child During an Engineering Design Project. Early Childhood Education Journal, 2023, 51, 211-222.	2.7	2
2	(Re-)Designing a measure of student's attitudes toward science: a longitudinal psychometric approach. International Journal of STEM Education, 2022, 9, .	5.0	2
3	Exploring caregiver influence on child creativity and innovation in an out-of-school engineering program. Thinking Skills and Creativity, 2022, 45, 101064.	3.5	2
4	Professionals' Identification Within and Across Science, Technology, Engineering, and Mathematics (STEM) Fields. Journal of Career Development, 2021, 48, 942-956.	2.8	2
5	Making for learning: how graduate students discuss and design for maker-focused pedagogy. Information and Learning Science, 2021, 122, 147-170.	1.3	2
6	Gauging Informal STEM Youth Program Impact: A Conceptual Framework and a Measurement Instrument. Journal of Youth Development, 2021, 16, 103-133.	0.3	1
7	Youth's Engagement as Scientists and Engineers in an Afterschool Making and Tinkering Program. Research in Science Education, 2020, 50, 1-22.	2.3	17
8	Development and validation of the role identity surveys in engineering (RIS-E) and STEM (RIS-STEM) for elementary students. International Journal of STEM Education, 2020, 7, .	5.0	18
9	Failures, Errors, and Mistakes: A Systematic Review of the Literature. , 2020, , 347-362.		2
10	"Seeing―Data Like an Expert: An Eye-Tracking Study Using Graphical Data Representations. CBE Life Sciences Education, 2019, 18, ar32.	2.3	24
11	Caught on Camera: Youth and Educators' Noticing of and Responding to Failure Within Making Contexts. Journal of Science Education and Technology, 2019, 28, 480-492.	3.9	8
12	"Where's My Mentor?!―Characterizing Negative Mentoring Experiences in Undergraduate Life Science Research. CBE Life Sciences Education, 2019, 18, ar61.	2.3	45
13	Failing to learn: The impact of failures during making activities. Thinking Skills and Creativity, 2018, 30, 116-124.	3.5	35
14	Undergraduate chemistry students' misconceptions about reaction coordinate diagrams. Chemistry Education Research and Practice, 2018, 19, 834-845.	2.5	22
15	"Failure Is a Major Component of Learning Anything― The Role of Failure in the Development of STEM Professionals. Journal of Science Education and Technology, 2017, 26, 223-237.	3.9	57
16	Evaluating the development of chemistry undergraduate researchers' scientific thinking skills using performance-data: first findings from the performance assessment of undergraduate research (PURE) instrument. Chemistry Education Research and Practice, 2017, 18, 472-485.	2.5	10
17	STEM Pathways: Do Men and Women Differ in Why They Enter and Exit?. AERA Open, 2017, 3, 233285841772727.	2.1	37
18	Evaluating Undergraduate Research Experiences—Development of a Self-Report Tool. Education Sciences, 2017, 7, 87.	2.6	10

ADAM V MALTESE

#	Article	IF	CITATIONS
19	What are students doing during lecture? Evidence from new technologies to capture student activity. International Journal of Research and Method in Education, 2016, 39, 208-226.	1.9	10
20	Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors. Information Visualization, 2016, 15, 198-213.	1.9	96
21	Students' problem solving approaches for developing geologic models in the field. Journal of Research in Science Teaching, 2015, 52, 1109-1131.	3.3	17
22	Research and Teaching: Data Visualization Literacy: Investigating Data Interpretation Along the Novice-Expert Continuum. Journal of College Science Teaching, 2015, 045, .	0.4	49
23	Assessing Multinational Interest in STEM: Implementing a Comparative Survey Research Study in China. International Journal of Chinese Education, 2014, 3, 109-131.	1.5	2
24	The Nature of Experiences Responsible for the Generation and Maintenance of Interest in STEM. Science Education, 2014, 98, 937-962.	3.0	126
25	A Summer Math and Physics Program for High School Students: Student Performance and Lessons Learned in the Second Year. Physics Teacher, 2013, 51, 280-284.	0.3	4
26	Through Their Eyes: Tracking the Gaze of Students in a Geology Field Course. Journal of Geoscience Education, 2013, 61, 81-88.	1.4	12
27	A Perspective of Gender Differences in Chemistry and Physics Undergraduate Research Experiences. Journal of Chemical Education, 2012, 89, 1364-1370.	2.3	36
28	The consequences of "school improvement― Examining the association between two standardized assessments measuring school improvement and student science achievement. Journal of Research in Science Teaching, 2012, 49, 804-830.	3.3	7
29	Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 2011, 95, 877-907.	3.0	637
30	Eyeballs in the Fridge: Sources of early interest in science. International Journal of Science Education, 2010, 32, 669-685.	1.9	389
31	The Effect of High School Physics Laboratories on Performance in Introductory College Physics. Physics Teacher, 2010, 48, 333-337.	0.3	7
32	An Educator's Perspective on Cyberinfrastructure. , 2008, , .		1
33	CAREER CHOICE: Enhanced: Planning Early for Careers in Science. Science, 2006, 312, 1143-1144.	12.6	692
34	"Maybe If I Put My Mind To It": 5th Graders' Receptivity to Pursuing Engineering Careers (Fundamental). , 0, , .		0
35	Board 120: Development of an Engineering Identity and Career Aspirations Survey for Use with Elementary Students. , 0, , .		0
36	Board 121: Development of a Create-a-Lego-Engineer Activity to Examine Students' Engineering Identity. , 0, , .		0

#	Article	IF	CITATIONS
37	Board 125: Exploring the Impact of University Engineering Role Models on Elementary Students (NSF) Tj ETQq1 1	0.78431	4 rgBT /Over
38	Board 126: Examining the Interactions Related to Role Modeling in an Elementary Outreach Program (Work in Progress). , 0, , .		0
39	Characterizing Engineering Outreach Ambassadors' Teaching Moves during Engineering Design Activities (Fundamental). , 0, , .		1