Jeremy P Kamil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1639951/publications.pdf Version: 2024-02-01

Ιερεμν Ρ Κλμιι

#	Article	IF	CITATIONS
1	Correction for Rando et al., "Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure― MSystems, 2022, , e0144721.	1.7	2
2	Structural Dynamics and Molecular Evolution of the SARS-CoV-2 Spike Protein. MBio, 2022, 13, e0203021.	1.8	10
3	The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. MBio, 2022, 13, e0297921.	1.8	117
4	Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .	1.8	64
5	The Human Cytomegalovirus Protein UL116 Interacts with the Viral Endoplasmic-Reticulum-Resident Glycoprotein UL148 and Promotes the Incorporation of gH/gL Complexes into Virions. Journal of Virology, 2021, 95, e0220720.	1.5	10
6	Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. Nature Communications, 2021, 12, 4598.	5.8	88
7	Emergence of an early SARS-CoV-2 epidemic in the United States. Cell, 2021, 184, 4939-4952.e15.	13.5	31
8	Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure. MSystems, 2021, 6, e0009521.	1.7	26
9	Control of Immediate Early Gene Expression for Human Cytomegalovirus Reactivation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 476.	1.8	17
10	FOXO transcription factors activate alternative major immediate early promoters to induce human cytomegalovirus reactivation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18764-18770.	3.3	27
11	Endoplasmic Reticulum (ER) Reorganization and Intracellular Retention of CD58 Are Functionally Independent Properties of the Human Cytomegalovirus ER-Resident Glycoprotein UL148. Journal of Virology, 2020, 94, .	1.5	11
12	The Human Cytomegalovirus Nonstructural Glycoprotein UL148 Reorganizes the Endoplasmic Reticulum. MBio, 2019, 10, .	1.8	15
13	Alternative promoters drive human cytomegalovirus reactivation from latency. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17492-17497.	3.3	55
14	Pathogen at the Gates: Human Cytomegalovirus Entry and Cell Tropism. Viruses, 2018, 10, 704.	1.5	108
15	The Human Cytomegalovirus Endoplasmic Reticulum-Resident Glycoprotein UL148 Activates the Unfolded Protein Response. Journal of Virology, 2018, 92, .	1.5	34
16	Human Cytomegalovirus Tropism Modulator UL148 Interacts with SEL1L, a Cellular Factor That Governs Endoplasmic Reticulum-Associated Degradation of the Viral Envelope Glycoprotein gO. Journal of Virology, 2018, 92, .	1.5	37
17	Expression Levels of Glycoprotein O (gO) Vary between Strains of Human Cytomegalovirus, Influencing the Assembly of gH/gL Complexes and Virion Infectivity. Journal of Virology, 2018, 92, .	1.5	22
18	Preparation of the Human Cytomegalovirus Nuclear Egress Complex and Associated Proteins. Methods in Enzymology, 2016, 569, 517-526.	0.4	9

JEREMY P KAMIL

#	Article	IF	CITATIONS
19	Viral Regulation of Cell Tropism in Human Cytomegalovirus. Journal of Virology, 2016, 90, 626-629.	1.5	28
20	A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4471-4476.	3.3	75
21	Human Cytomegalovirus UL97 Phosphorylates the Viral Nuclear Egress Complex. Journal of Virology, 2015, 89, 523-534.	1.5	56
22	Human Cytomegalovirus Resistance to Deoxyribosylindole Nucleosides Maps to a Transversion Mutation in the Terminase Subunit-Encoding Gene <i>UL89</i> . Antimicrobial Agents and Chemotherapy, 2015, 59, 226-232.	1.4	3
23	Human Cytomegalovirus UL50 and UL53 Recruit Viral Protein Kinase UL97, Not Protein Kinase C, for Disruption of Nuclear Lamina and Nuclear Egress in Infected Cells. Journal of Virology, 2014, 88, 249-262.	1.5	63
24	An Epistatic Relationship between the Viral Protein Kinase UL97 and the <i>UL133-UL138</i> Latency Locus during the Human Cytomegalovirus Lytic Cycle. Journal of Virology, 2014, 88, 6047-6060.	1.5	26
25	The ULb′ Region of the Human Cytomegalovirus Genome Confers an Increased Requirement for the Viral Protein Kinase UL97. Journal of Virology, 2013, 87, 6359-6376.	1.5	23
26	Inactivation of Retinoblastoma Protein Does Not Overcome the Requirement for Human Cytomegalovirus UL97 in Lamina Disruption and Nuclear Egress. Journal of Virology, 2013, 87, 5019-5027.	1.5	20
27	Resistance of Human Cytomegalovirus to Cyclopropavir Maps to a Base Pair Deletion in the Open Reading Frame ofUL97. Antimicrobial Agents and Chemotherapy, 2013, 57, 4343-4348.	1.4	17
28	Marek's Disease Viral Interleukin-8 Promotes Lymphoma Formation through Targeted Recruitment of B Cells and CD4 ⁺ CD25 ⁺ T Cells. Journal of Virology, 2012, 86, 8536-8545.	1.5	65
29	HATs On for Drug Resistance. Cell Host and Microbe, 2011, 9, 85-87.	5.1	7
30	Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44. Virology, 2011, 417, 268-280.	1.1	21
31	Stereoselective Phosphorylation of Cyclopropavir by pUL97 and Competitive Inhibition by Maribavir. Antimicrobial Agents and Chemotherapy, 2010, 54, 3093-3098.	1.4	38
32	Inactivation and Disassembly of the Anaphase-Promoting Complex during Human Cytomegalovirus Infection Is Associated with Degradation of the APC5 and APC4 Subunits and Does Not Require UL97-Mediated Phosphorylation of Cdh1. Journal of Virology, 2010, 84, 10832-10843.	1.5	32
33	Human papillomavirus 16 E7 inactivator of retinoblastoma family proteins complements human cytomegalovirus lacking UL97 protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16823-16828.	3.3	37
34	Viral Mimicry of Cdc2/Cyclin-Dependent Kinase 1 Mediates Disruption of Nuclear Lamina during Human Cytomegalovirus Nuclear Egress. PLoS Pathogens, 2009, 5, e1000275.	2.1	183
35	Phosphorylation of Retinoblastoma Protein by Viral Protein with Cyclin-Dependent Kinase Function. Science, 2008, 320, 797-799.	6.0	203
36	Horizontal Transmission of Marek's Disease Virus Requires U S 2, the U L 13 Protein Kinase, and gC. Journal of Virology, 2007, 81, 10575-10587.	1.5	105

Jeremy P Kamil

#	Article	IF	CITATIONS
37	Human Cytomegalovirus Protein Kinase UL97 Forms a Complex with the Tegument Phosphoprotein pp65. Journal of Virology, 2007, 81, 10659-10668.	1.5	80
38	Marek's disease virus: from miasma to model. Nature Reviews Microbiology, 2006, 4, 283-294.	13.6	343
39	A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. Journal of Experimental Medicine, 2006, 203, 1307-1317.	4.2	112
40	vLIP, a Viral Lipase Homologue, Is a Virulence Factor of Marek's Disease Virus. Journal of Virology, 2005, 79, 6984-6996.	1.5	64
41	The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6091-6096.	3.3	181