Adarsh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163982/publications.pdf Version: 2024-02-01

ADADEH KUMAD

#	Article	IF	CITATIONS
1	Seasonal variation in heavy metal contaminations in water and sediments of Jamshedpur stretch of Subarnarekha river, India. Environmental Earth Sciences, 2016, 75, 1.	1.3	90
2	Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. Journal of Environmental Management, 2017, 190, 20-27.	3.8	88
3	Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa, India. Environmental Earth Sciences, 2015, 74, 2617-2633.	1.3	66
4	Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology and Innovation, 2022, 25, 102154.	3.0	52
5	Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere, 2021, 276, 130038.	4.2	47
6	<i>Brassica juncea</i> (L) <i>Czern.</i> (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. International Journal of Phytoremediation, 2020, 22, 733-744.	1.7	46
7	Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: a case study from India. Environmental Science and Pollution Research, 2018, 25, 27992-28003.	2.7	44
8	Effect of Organic Manures on the Growth of <i>Cymbopogon citratus</i> and <i>Chrysopogon zizanioides</i> for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment. International Journal of Phytoremediation, 2015, 17, 437-447.	1.7	42
9	Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere, 2021, 266, 128983.	4.2	42
10	Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. International Journal of Mining, Reclamation and Environment, 2016, 30, 231-244.	1.2	41
11	Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. Journal of Soils and Sediments, 2017, 17, 1358-1368.	1.5	37
12	Evaluation of toxic metal(loid)s concentration in soils around an open-cast coal mine (Eastern India). Environmental Earth Sciences, 2019, 78, 1.	1.3	32
13	Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia. International Journal of Phytoremediation, 2016, 18, 1037-1045.	1.7	30
14	Mercury remediation potential of Brassica juncea (L.) Czern. for clean-up of flyash contaminated sites. Chemosphere, 2020, 248, 125857.	4.2	30
15	Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest. Ecological Indicators, 2021, 123, 107354.	2.6	30
16	Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Environmental Science and Pollution Research, 2017, 24, 22990-23005.	2.7	29
17	Metal contamination in water and bioaccumulation of metals in the planktons, molluscs and fishes in Jamshedpur stretch of Subarnarekha River of Chotanagpur plateau, India. Water and Environment Journal, 2015, 29, 207-213.	1.0	28
18	Stabilization of tannery sludge amended soil using Ricinus communis, Brassica juncea and Nerium oleander. Journal of Soils and Sediments, 2017, 17, 1449-1458.	1.5	27

Adarsh Kumar

#	Article	IF	CITATIONS
19	Effect of commercial pesticides on plant growth-promoting activities ofBurkholderiasp. strain L2 isolated from rhizosphere ofLycopersicon esculentumcultivated in agricultural soil. Toxicological and Environmental Chemistry, 2015, 97, 1180-1189.	0.6	26
20	Translocation and Bioaccumulation of Metals in Oryza sativa and Zea mays Growing in Chromite-Asbestos Contaminated Agricultural Fields, Jharkhand, India. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 434-441.	1.3	23
21	Toxic metal(loid)s contamination and potential human health risk assessment in the vicinity of century-old copper smelter, Karabash, Russia. Environmental Geochemistry and Health, 2020, 42, 4113-4124.	1.8	23
22	Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. Journal of Environmental Management, 2021, 289, 112553.	3.8	22
23	Urea increased nickel and copper accumulation in the leaves of Egeria densa (Planch.) Casp. and Ceratophyllum demersum L. during short-term exposure. Ecotoxicology and Environmental Safety, 2018, 148, 152-159.	2.9	18
24	Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects. Journal of Environmental Management, 2022, 309, 114711.	3.8	15
25	High dose of urea enhances the nickel and copper toxicity in Brazilian elodea (Egeria densa Planch.) Tj ETQq1 1 C	0.784314 r 0.5	gBT /Overloc $_{13}$
26	Effect of Fast-Growing Trees on Soil Properties and Carbon Storage in an Afforested Coal Mine Land (India). Minerals (Basel, Switzerland), 2020, 10, 840.	0.8	13
27	A comparative study of Epipactis atrorubens in two different forest communities of the Middle Urals, Russia. Journal of Forestry Research, 2020, 31, 2111-2120.	1.7	10
28	Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study. Environmental Geochemistry and Health, 2021, 43, 1401-1413.	1.8	10
29	Mycoremediation for Mine Site Rehabilitation. , 2018, , 233-260.		8
30	COMPARATIVE STUDY ON BIOACCUMULATION AND TRANSLOCATION OF METALS IN BERMUDA GRASS (CYNODON DACTYLON) NATURALLY GROWING ON FLY ASH LAGOON AND TOPSOIL. Applied Ecology and Environmental Research, 2016, 14, 1-12.	0.2	8
31	Synergism of Industrial and Agricultural Waste as a Suitable Carrier Material for Developing Potential Biofertilizer for Sustainable Agricultural Production of Eggplant. Horticulturae, 2022, 8, 444.	1.2	8
32	Evaluation of geotechnical properties of overburden dump for better reclamation success in mining areas. Environmental Earth Sciences, 2017, 76, 1.	1.3	6
33	Phytomanagement of Chromium Contaminated Brown Fields. , 2019, , 447-469.		6
34	Energy Plantations, Medicinal and Aromatic Plants on Contaminated Soil. , 2016, , 29-47.		5
35	Ground water quality evaluation in the lean period of a mining township. Applied Water Science, 2017, 7, 3553-3560.	2.8	3

Adaptive potential of Typha latifolia L. under extreme technogenic pollution. , 2019, , .

3

#	Article	IF	CITATIONS
37	Plant growth promoting attributes ofÂBurkholderiaÂsp. sustained under multiple pesticide stress. Journal of Biotechnology, 2019, 305, S49-S50.	1.9	1
38	Scope for Applying Transgenic Plant Technology for Remediation and Fortification of Selenium. , 2019, , 429-461.		1
39	Chromium tolerant plant growth promoting rhizobacteria from the rhizosphere of Trifolium pratense and Melilotus albus. AIP Conference Proceedings, 2019, , .	0.3	1
40	Development of biochar and flyash based bioformulations using pesticide tolerant PGPRs and its effects on Lycopersicon esculentum Mill New Biotechnology, 2016, 33, S196.	2.4	0