
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163966/publications.pdf Version: 2024-02-01

OMED L CÃ1/1DED

#	Article	IF	CITATIONS
1	A revisit to the validity of flamelet assumptions in turbulent premixed combustion and implications for future research. Combustion and Flame, 2022, 239, 111635.	2.8	7
2	Impact of ethanol blending on soot in turbulent swirl-stabilized Jet A-1 spray flames in a model gas turbine combustor. Proceedings of the Combustion Institute, 2021, 38, 6431-6439.	2.4	12
3	Sooting characteristics of ethanol-ethylene blends in laminar coflow diffusion flames up to 10 bar. Combustion and Flame, 2021, 225, 39-47.	2.8	14
4	Effects of pressure on soot formation in laminar coflow methane/air diffusion flames doped with n-heptane and toluene between 2 and 8 atm. Proceedings of the Combustion Institute, 2021, 38, 1403-1412.	2.4	17
5	Effect of hydrogen enrichment of laminar ethylene diffusion flames on thermal structure and soot yields at pressures up to 10 bar. Proceedings of the Combustion Institute, 2021, 38, 2507-2516.	2.4	14
6	Soot formation in turbulent swirl-stabilized spray flames in a model combustor fueled with n-butanol/Jet A-1 blends. Fuel, 2021, 287, 119452.	3.4	14
7	Effects of benzene, cyclo-hexane and n-hexane addition to methane on soot yields in high-pressure laminar diffusion flames. Proceedings of the Combustion Institute, 2021, 38, 1107-1114.	2.4	8
8	Sooting propensity dependence on pressure of ethylbenzene, p-xylene, o-xylene and n-octane in laminar diffusion flames. Combustion and Flame, 2021, 227, 202-213.	2.8	9
9	Ethanol supplement increases soot yields in nitrogen-diluted laminar ethylene diffusion flames at pressures from 3 to 5Åbar. Combustion and Flame, 2021, 227, 1-10.	2.8	9
10	Comments on the Experimental Study of the Combustion and Emission Characteristics of Lower Alcohols in a Constant Volume Vessel. Energy & amp; Fuels, 2021, 35, 12753-12757.	2.5	1
11	Comments on effects of adding cyclohexane, n-hexane, ethanol, and 2,5-dimethylfuran to fuel on soot formation in laminar coflow n-heptane/iso-octane diffusion flame. Combustion and Flame, 2021, 232, 111555.	2.8	1
12	Critique of the experimental study of the combustion and emission characteristics of ethanol, diesel-gasoline, n-heptane-iso-octane, n-heptane-ethanol and decane-ethanol in a constant volume vessel. Fuel, 2021, 304, 121368.	3.4	0
13	Does soot form in a spark-ignition engine fuelled with lean methanol and methanol-hydrogen mixtures?. Fuel, 2021, 306, 121728.	3.4	0
14	On the effect of pressure on soot nanostructure: A Raman spectroscopy investigation. Combustion and Flame, 2020, 219, 13-19.	2.8	30
15	Pressure dependence of sooting characteristics of m-xylene and n-octane doped laminar methane diffusion flames from 2 to 10 bar. Combustion and Flame, 2020, 220, 203-209.	2.8	7
16	Soot aggregate morphology deduced from thermophoretic sampling in coflow laminar methane diffusion flames at pressures up to 30 bar. Combustion and Flame, 2020, 222, 411-422.	2.8	15
17	Influence of m-xylene addition to Jet A-1 on spray structure, flow field and soot production in turbulent swirl-stabilized spray flames in a model combustor. Combustion and Flame, 2020, 219, 258-267.	2.8	7
18	Soot aggregate morphology in coflow laminar ethylene diffusion flames at elevated pressures. Proceedings of the Combustion Institute, 2019, 37, 841-848.	2.4	32

#	Article	IF	CITATIONS
19	Soot and flow field in turbulent swirl-stabilized spray flames of Jet A-1 in a model combustor. Proceedings of the Combustion Institute, 2019, 37, 5437-5444.	2.4	28
20	Soot formation and flame structure in swirl-stabilized turbulent non-premixed methane combustion. Combustion and Flame, 2019, 209, 303-312.	2.8	26
21	Comments on Tong et al.: "Experimental study on dynamics of confined low swirl partially premixed methane-hydrogen-air flame― International Journal of Hydrogen Energy, 2019, 44, 17103-17104.	3.8	Ο
22	A comment on papers by Zhou etÂal. (CNF, 2018) and Zhou etÂal. (CST, 2019): Flame displacement speed, flame front velocity, and edge (reactants) velocity. Combustion and Flame, 2019, 205, 133-134.	2.8	0
23	Comment on the paper "Experimental study of effect of hydrogen addition on combustion of low caloric value gas fuelsâ€. International Journal of Hydrogen Energy, 2019, 44, 4006-4007.	3.8	1
24	Effect of ethanol addition on soot formation in laminar methane diffusion flames at pressures above atmospheric. Combustion and Flame, 2018, 193, 306-312.	2.8	24
25	Experimental and numerical study of laminar flame extinction for syngas and syngas-methane blends. Combustion Science and Technology, 2018, 190, 1455-1471.	1.2	7
26	Combined experimental and numerical study of ethanol laminar flame extinction. Combustion Science and Technology, 2018, 190, 1472-1487.	1.2	7
27	Soot concentration and primary particle size in swirl-stabilized non-premixed turbulent flames of ethylene and air. Experimental Thermal and Fluid Science, 2018, 95, 73-80.	1.5	23
28	Comment on "Experimental Studies of Magnetic Effect on Methane Laminar Combustion Characteristics― Combustion Science and Technology, 2018, 190, 186-188.	1.2	0
29	Soot formation in diluted laminar ethene, propene and 1-butene diffusion flames at elevated pressures. Combustion and Flame, 2018, 197, 378-388.	2.8	23
30	Soot primary particle size dependence on combustion pressure in laminar ethylene diffusion flames. Fuel, 2018, 220, 464-470.	3.4	24
31	Pressure dependence of primary soot particle size determined using thermophoretic sampling in laminar methane-air diffusion flames. Proceedings of the Combustion Institute, 2017, 36, 975-984.	2.4	29
32	Effects of carbon dioxide and nitrogen addition on soot processes in laminar diffusion flames of ethylene-air at high pressures. Fuel, 2017, 200, 76-80.	3.4	26
33	Novel Experimental Approach to Studying the Thermal Stability and Coking Propensity of Jet Fuel. Energy & Fuels, 2017, 31, 3585-3591.	2.5	11
34	Raman Spectroscopy of Soot Sampled in High-Pressure Diffusion Flames. Energy & Fuels, 2017, 31, 10158-10164.	2.5	30
35	Soot formation characteristics of diffusion flames of methane doped with toluene and n-heptane at elevated pressures. Proceedings of the Combustion Institute, 2017, 36, 737-744.	2.4	39
36	A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames. Review of Scientific Instruments, 2016, 87, 055101.	0.6	26

#	Article	IF	CITATIONS
37	On periodic behavior of weakly turbulent premixed flame corrugations. Combustion and Flame, 2016, 168, 147-165.	2.8	18
38	Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Experimental Thermal and Fluid Science, 2016, 73, 42-48.	1.5	21
39	Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames. Combustion and Flame, 2015, 162, 4417-4441.	2.8	40
40	Performance of conditional source-term estimation model for LES of turbulent premixed flames in thin reaction zones regime. Proceedings of the Combustion Institute, 2015, 35, 1367-1375.	2.4	19
41	Numerical and experimental study of the influence of CO2 and N2 dilution on soot formation in laminar coflow C2H4/air diffusion flames at pressures between 5 and 20 atm. Combustion and Flame, 2015, 162, 2231-2247.	2.8	79
42	Consumption speed and burning velocity in counter-gradient and gradient diffusion regimes of turbulent premixed combustion. Combustion and Flame, 2015, 162, 1422-1439.	2.8	28
43	Dependence of sooting characteristics and temperature field of co-flow laminar pure and nitrogen-diluted ethylene–air diffusion flames on pressure. Combustion and Flame, 2015, 162, 1566-1574.	2.8	32
44	Experimental investigation of the inner structure of premixed turbulent methane/air flames in the thin reaction zones regime. Combustion and Flame, 2015, 162, 115-128.	2.8	32
45	Structure of the Velocity and Soot Concentration Fields of a Swirl Stabilized Turbulent Non-Premixed Flame in a Gas Turbine Model Combustor. , 2014, , .		2
46	Soot Formation in Laminar Diffusion Flames of Diluted Ethylene in Air at Pressures up to 20 ATM. , 2014, , .		2
47	Large-eddy simulation of lean hydrogen–methane turbulent premixed flames in the methane-dominated regime. International Journal of Hydrogen Energy, 2014, 39, 7147-7157.	3.8	37
48	Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames. Combustion and Flame, 2014, 161, 3154-3165.	2.8	52
49	Topology and Brush Thickness of Turbulent Premixed V-shaped Flames. Flow, Turbulence and Combustion, 2014, 93, 439-459.	1.4	32
50	Influence of edge velocity on flame front position and displacement speed in turbulent premixed combustion. Combustion and Flame, 2014, 161, 2614-2626.	2.8	19
51	Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combustion and Flame, 2014, 161, 2678-2691.	2.8	43
52	Comparison of structures of laminar methane–oxygen and methane–air diffusion flames from atmospheric to 60atm. Combustion and Flame, 2013, 160, 1990-1998.	2.8	47
53	Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proceedings of the Combustion Institute, 2013, 34, 1393-1400.	2.4	48
54	Sooting behaviour of n-heptane laminar diffusion flames at high pressures. Combustion and Flame, 2013, 160, 1650-1656.	2.8	55

#	Article	IF	CITATIONS
55	Turbulent premixed combustion in V-shaped flames: Characteristics of flame front. Physics of Fluids, 2013, 25, .	1.6	47
56	Comparative Study of Algebraic and Transported FSD Models for LES of Premixed Flames in Flamelet and Thin Reaction Zones Regimes. , 2013, , .		0
57	LES of a Hydrogen-Enriched Lean Turbulent Premixed Flame. , 2013, , .		Ο
58	Formation of Liquid Methane–Water Mixture during Combustion of a Laminar Methane Jet at Supercritical Pressures. Energy & Fuels, 2012, 26, 5462-5467.	2.5	12
59	Three-Dimensional Fluorescence Spectra of Thermally Stressed Commercial Jet A-1 Aviation Fuel in the Autoxidative Regime. Energy & amp; Fuels, 2012, 26, 2191-2197.	2.5	13
60	Soot formation in high pressure laminar diffusion flames. Progress in Energy and Combustion Science, 2012, 38, 818-845.	15.8	216
61	Simulation of Microgravity Diffusion Flames Using Sub-Atmospheric Pressures. AIAA Journal, 2012, 50, 976-980.	1.5	8
62	Solution of the equation of radiative transfer using a Newton–Krylov approach and adaptive mesh refinement. Journal of Computational Physics, 2012, 231, 3023-3040.	1.9	32
63	Analysis of Aviation Fuel Thermal Oxidative Stability by Electrospray Ionization Mass Spectrometry (ESI–MS). Energy & Fuels, 2011, 25, 2142-2150.	2.5	32
64	Effects of Pressure and Gravity in Laminar Coflow Ethylene Diffusion Flames. , 2011, , .		0
65	Assessment of Presumed PDF Models for Large Eddy Simulation of Turbulent Premixed Flames. , 2011, , .		2
66	A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames. Combustion and Flame, 2011, 158, 1933-1945.	2.8	60
67	Unified behaviour of maximum soot yields of methane, ethane and propane laminar diffusion flames at high pressures. Combustion and Flame, 2011, 158, 2037-2044.	2.8	56
68	Effects of gravity and pressure on laminar coflow methane–air diffusion flames at pressures from 1 to 60 atmospheres. Combustion and Flame, 2011, 158, 860-875.	2.8	45
69	Experimental and numerical study of soot formation in laminar ethylene diffusion flames at elevated pressures from 10 to 35atm. Proceedings of the Combustion Institute, 2011, 33, 549-557.	2.4	50
70	Experimental study of soot and temperature field structure of laminar co-flow ethylene–air diffusion flames with nitrogen dilution at elevated pressures. Combustion and Flame, 2011, 158, 416-422.	2.8	48
71	Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3MPa. Proceedings of the Combustion Institute, 2011, 33, 577-584.	2.4	80
72	LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proceedings of the Combustion Institute, 2011, 33, 1365-1371.	2.4	68

#	Article	IF	CITATIONS
73	Lean Premixed Turbulent Flame Front Structure and Implications for Modeling. , 2010, , .		0
74	Observation of liquid phase material in methane–air laminar diffusion flame soot experiments above 60 atmospheres. Combustion and Flame, 2010, 157, 408-409.	2.8	3
75	Soot formation and temperature structure in small methane–oxygen diffusion flames at subcritical and supercritical pressures. Combustion and Flame, 2010, 157, 1194-1201.	2.8	39
76	Dynamics of Lean-Premixed Turbulent Combustion at High Turbulence Intensities. Combustion Science and Technology, 2010, 182, 544-558.	1.2	29
77	A computational framework for predicting laminar reactive flows with soot formation. Combustion Theory and Modelling, 2010, 14, 793-825.	1.0	41
78	Soot Formation in Co- and Counter-flow Laminar Diffusion Flames of Binary Mixtures of Ethylene and Butane Isomers and Synergistic Effects. Energy & Fuels, 2010, 24, 4912-4918.	2.5	24
79	Spectroscopic Study of Aviation Jet Fuel Thermal Oxidative Stability. Energy & Fuels, 2010, 24, 6437-6441.	2.5	22
80	Simulation of Microgravity Diffusion Flames Using Sub-Atmospheric Pressures. , 2010, , .		2
81	Structure of Laminar Methane-Oxygen Diffusion Flames at High Pressures. , 2010, , .		0
82	Investigation of Dynamics of Lean Turbulent Premixed Flames by Rayleigh Scattering. AIAA Journal, 2009, 47, 2964-2973.	1.5	28
83	Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime. Proceedings of the Combustion Institute, 2009, 32, 1747-1754.	2.4	62
84	Soot formation and temperature field structure in co-flow laminar methane–air diffusion flames at pressures from 10 to 60atm. Proceedings of the Combustion Institute, 2009, 32, 769-775.	2.4	90
85	Investigation of Structure and Dynamics of Lean Turbulent Premixed Flames by Rayleigh Scattering. , 2009, , .		0
86	Comments on "Electrorheology Leads to Efficient Combustion―by Tao et al Energy & Fuels, 2009, 23, 591-592.	2.5	4
87	Comparison of Subfilter Scale Models for LES of Turbulent Premixed Flames. , 2008, , .		1
88	Effects of Pressure and Preheat on Super-Adiabatic Flame Temperatures in Rich Premixed Methane/Air Flames. Combustion Science and Technology, 2008, 180, 437-452.	1.2	23
89	Flame Surface Fractal Characteristics in Premixed Turbulent Combustion at High Turbulence Intensities. AIAA Journal, 2007, 45, 2785-2789.	1.5	19
90	Flame Surface Fractal Characteristics in Premixed Turbulent Combustion at Medium to High Turbulence Intensities. , 2007, , .		0

#	Article	IF	CITATIONS
91	Flame Surface Density of Turbulent Premixed Flames at Medium to High Turbulence Intensities. , 2007, ,		0
92	FLAME SURFACE DENSITIES IN PREMIXED COMBUSTION AT MEDIUM TO HIGH TURBULENCE INTENSITIES. Combustion Science and Technology, 2007, 179, 191-206.	1.2	39
93	Complete conversion of ethane to soot in a coflow laminar diffusion flame at 3.65 MPa. Combustion and Flame, 2007, 150, 400-403.	2.8	6
94	Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proceedings of the Combustion Institute, 2007, 31, 1369-1375.	2.4	57
95	The effect of reformate gas enrichment on extinction limits and NOX formation in counterflow CH4/air premixed flames. Proceedings of the Combustion Institute, 2007, 31, 1197-1204.	2.4	25
96	Fractal characterisation of high-pressure and hydrogen-enriched CH4–air turbulent premixed flames. Proceedings of the Combustion Institute, 2007, 31, 1345-1352.	2.4	33
97	Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene–air diffusion flame. Combustion and Flame, 2006, 145, 324-338.	2.8	156
98	Soot formation and temperature field structure in laminar propane–air diffusion flames at elevated pressures. Combustion and Flame, 2006, 145, 765-778.	2.8	114
99	Effect of fuel nozzle material properties on soot formation and temperature field in coflow laminar diffusion flames. Combustion and Flame, 2006, 144, 426-433.	2.8	27
100	Soot concentration and temperature measurements in co-annular, nonpremixed CH/air laminar flames at pressures up to 4 MPa. Combustion and Flame, 2005, 140, 222-232.	2.8	168
101	Effects of H2 and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames. Combustion and Flame, 2005, 143, 264-281.	2.8	53
102	The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proceedings of the Combustion Institute, 2005, 30, 303-311.	2.4	185
103	A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Applied Optics, 2005, 44, 6773.	2.1	209
104	Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combustion and Flame, 2004, 136, 180-190.	2.8	236
105	A Numerical Investigation of Thermal Diffusion Influence on Soot Formation in Ethylene/Air Diffusion Flames. International Journal of Computational Fluid Dynamics, 2004, 18, 139-151.	0.5	35
106	Influence of the Fuel Nozzle Material on Soot Formation and Temperature Field in Coflow Laminar Diffusion Flames. , 2004, , .		1
107	Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combustion Theory and Modelling, 2003, 7, 301-315.	1.0	106
108	The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene–air diffusion flame. Combustion Theory and Modelling, 2002, 6, 173-187.	1.0	82

#	Article	IF	CITATIONS
109	Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames. Proceedings of the Combustion Institute, 2002, 29, 1543-1550.	2.4	41
110	A robust and accurate algorithm of the β-pdf integration and its application to turbulent methane–air diffusion combustion in a gas turbine combustor simulator. International Journal of Thermal Sciences, 2002, 41, 763-772.	2.6	20
111	Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73, 409-421.	1.1	127
112	Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA Journal, 2002, 40, 1789-1795.	1.5	17
113	Clouds Over Soot Evaporation: Errors in Modeling Laser-Induced Incandescence of Soot. Journal of Heat Transfer, 2001, 123, 814-818.	1.2	90
114	Transient Particulate Matter Measurements from the Exhaust of a Direct Injection Spark Ignition Automobile. , 2001, , .		12
115	Application of the statistical narrow-band correlated-k method to non-grey gas radiation in CO2–H2O mixtures: approximate treatments of overlapping bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 68, 401-417.	1.1	69
116	The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combustion and Flame, 2001, 125, 778-787.	2.8	341
117	Flame front surface characteristics in turbulent premixed propane/air combustion. Combustion and Flame, 2000, 120, 407-416.	2.8	112
118	Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers. Combustion and Flame, 2000, 121, 275-287.	2.8	46
119	Application of the statistical narrow-band correlated-k method to low-resolution spectral intensity and radiative heat transfer calculations — effects of the quadrature scheme. International Journal of Heat and Mass Transfer, 2000, 43, 3119-3135.	2.5	94
120	Transport of water vapor from combustion gases into liquid-phase in unsteady methanol pool flames. Experimental Thermal and Fluid Science, 2000, 23, 51-57.	1.5	1
121	Performance of discrete ordinates method in a gas turbine combustor simulator. Experimental Thermal and Fluid Science, 2000, 21, 134-141.	1.5	22
122	In-Situ Real-Time Characterization of Particulate Emissions from a Diesel Engine Exhaust by Laser-Induced Incandescence. , 2000, , .		26
123	Band Lumping Strategy for Radiation Heat Transfer Calculations Using a Narrowband Model. Journal of Thermophysics and Heat Transfer, 2000, 14, 278-281.	0.9	53
124	VIEWS ON THE STRUCTURE OF TRANSIENT DIESEL SPRAYS. Atomization and Sprays, 2000, 10, 355-386.	0.3	65
125	Application of Statistical Narrowband Model to Three-Dimensional Absorbing-Emitting-Scattered Media. Journal of Thermophysics and Heat Transfer, 1999, 13, 285-291.	0.9	15

Radiation heat transfer calculations using the SNBCK method. , 1999, , .

#	Article	IF	CITATIONS
127	Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Applied Optics, 1999, 38, 2478.	2.1	164
128	Surface density measurements of turbulent premixed flames in a spark-ignition engine and a bunsen-type burner using planar laser-induced fluorescence. Proceedings of the Combustion Institute, 1996, 26, 427-435.	0.3	44
129	Effects of oxygen on soot formation in methane, propane, and n-Butane diffusion flames. Combustion and Flame, 1995, 101, 302-310.	2.8	89
130	Characterization of flame front surfaces in turbulent premixed methane/Air combustion. Combustion and Flame, 1995, 101, 461-470.	2.8	99
131	Inner cutoff scale of flame surface wrinkling in turbulent premixed flames. Combustion and Flame, 1995, 103, 107-114.	2.8	111
132	The structure of the dense core region in transient diesel sprays. Proceedings of the Combustion Institute, 1994, 25, 371-379.	0.3	12
133	Performance and emission characteristics of a diesel engine operating on safflower seed oil methyl ester. Applied Biochemistry and Biotechnology, 1994, 45-46, 93-102.	1.4	30
134	Influence of sulfur dioxide on soot formation in diffusion flames. Combustion and Flame, 1993, 92, 410-418.	2.8	33
135	Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames. Combustion and Flame, 1993, 92, 115-124.	2.8	75
136	Safflower seed oil of Turkish origin as a diesel fuel alternative. Applied Biochemistry and Biotechnology, 1993, 39-40, 89-105.	1.4	10
137	Soot formation in laminar diffusion flames at elevated temperatures. Combustion and Flame, 1992, 88, 75-82.	2.8	33
138	Turbulent premixed flame propagation models for different combustion regimes. Proceedings of the Combustion Institute, 1991, 23, 743-750.	0.3	155
139	Turbulent premixed combustion modelling using fractal geometry. Proceedings of the Combustion Institute, 1991, 23, 835-842.	0.3	68
140	Formation and temperature of soot particles in laminar diffusion flames with elevated temperatures. Proceedings of the Combustion Institute, 1991, 23, 1509-1515.	0.3	7
141	Influence of Fuel-Bound Sulfur on Soot Formation in Laminar Diffusion Flames of Liquid Hydrocarbons. Combustion Science and Technology, 1991, 77, 337-343.	1.2	5
142	Multiple Scattering Effects in Dense Spray Sizing by Laser Diffraction. Aerosol Science and Technology, 1990, 12, 570-577.	1.5	16
143	Influence of hydrocarbon fuel structural constitution and flame temperature on soot formation in laminar diffusion flames. Combustion and Flame, 1989, 78, 179-194.	2.8	52
144	Comments on "Prediction of cetane number by group additivity and carbon-13 nuclear magnetic resonance". Industrial & Engineering Chemistry Research, 1988, 27, 2192-2194.	1.8	4

#	Article	IF	CITATIONS
145	Ignition Quality Determination of Marine Diesel Fuels. , 1987, , .		4
146	Ignition quality determination of diesel fuels from hydrogen type distribution of hydrocarbons. Combustion and Flame, 1986, 63, 231-238.	2.8	34
147	Prediction of cetane number of diesel fuels from carbon type structural composition determined by proton NMR spectroscopy. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 153-156.	0.5	35
148	Spheroidal evaporation and ignition of fuel droplets on a hot surface. Proceedings of the Combustion Institute, 1985, 20, 1751-1760.	0.3	8
149	Ignition Quality Rating Methods for Diesel Fuels-A Critical Appraisal. , 1985, , .		24
150	Burning velocities of ethanol-isooctane blends. Combustion and Flame, 1984, 56, 261-268.	2.8	80
151	On water-ethanol-gasoline blends as spark ignition engine fuels. Fuel, 1983, 62, 1381-1382.	3.4	3
152	Laminar Burning Velocities of Methanol, Isooctane and Isooctane/Methanol Blends. Combustion Science and Technology, 1983, 33, 179-192.	1.2	43
153	Laminar burning velocities of methanol, ethanol and isooctane-air mixtures. Proceedings of the Combustion Institute, 1982, 19, 275-281.	0.3	168
154	Cold Starting Characteristics of Tar Sands Fuels in a Swirl Chamber Automotive Diesel Engine. , 0, , .		2
155	Cetane Number Estimation of Diesel Fuels from Carbon Type Structural Composition. , 0, , .		27
156	Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels. , 0, , .		165
157	Surface Tension as an Indicator of Cetane Number of Diesel Fuels. , 0, , .		1
158	NRCC Cetane Index $\hat{a} \in \hat{~} 1$: An Improved Cetane Number Predictor. , 0, , .		6
159	Structure of Middle Distillate Fuels: On the Atomic Carbon and Hydrogen to Carbon Ratio at Alpha Position to Aromatic Rings. , 0, , .		0
160	Diesel Spray Structure Investigation by Laser Diffraction and Sheet Illumination. , 0, , .		20
161	Flame Luminosity Enhancement of Neat Methanol Fuel by Non-Aromatic Hydrocarbon Additives. , 0, , .		1
162	Effects of Fuel Properties on Exhaust Emissions of a Single Cylinder DI Diesel Engine. , 0, , .		14

10

#	Article	IF	CITATIONS
163	Effects of Cetane Enhancing Additives and Ignition Quality on Diesel Engine Emissions. , 0, , .		11
164	Comparison of the Exhaust Emissions of Diesel Fuels Derived from Oil Sands and Conventional Crude Oil. , 0, , .		5
165	Particulate Matter Measurements in a Diesel Engine Exhaust by Laser-Induced Incandescence and the Standard Gravimetric Procedure. , 0, , .		24
166	Influence of Fuel Aromatics Type on the Particulate Matter and NO _x Emissions of a Heavy-Duty Diesel Engine. , 0, , .		12
167	Do Turbulent Premixed Flame Fronts in Spark-Ignition Engines Behave Like Passive Surfaces?. , 0, , .		6
168	Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine. , 0, , .		23
169	Technology Developments and Renewable Fuels for Sustainable Aviation. , 0, , 17-31.		Ο