Courtney A Mcdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1639321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Umbilical Cord Blood and Cord Tissue-Derived Cell Therapies for Neonatal Morbidities: Current Status and Future Challenges. Stem Cells Translational Medicine, 2022, 11, 135-145.	1.6	15
2	Effect of expansion of human umbilical cord blood CD34 + cells on neurotrophic and angiogenic factor expression and function. Cell and Tissue Research, 2022, 388, 117-132.	1.5	3
3	Optimization of behavioral testing in a long-term rat model of hypoxic ischemic brain injury. Behavioural Brain Research, 2021, 409, 113322.	1.2	7
4	Umbilical cord blood therapy modulates neonatal hypoxic ischemic brain injury in both females and males. Scientific Reports, 2021, 11, 15788.	1.6	10
5	Neural Stem Cell Treatment for Perinatal Brain Injury: A Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cells Translational Medicine, 2021, 10, 1621-1636.	1.6	12
6	Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs. Stem Cell Research and Therapy, 2020, 11, 17.	2.4	20
7	Invited Commentary. Annals of Thoracic Surgery, 2020, 109, 1281-1282.	0.7	О
8	Multiple Doses of Umbilical Cord Blood Cells Improve Long-Term Perinatal Brain Injury. Stem Cells Translational Medicine, 2020, 9, S3-S3.	1.6	5
9	Umbilical Cord Blood Cells Do Not Reduce Ventilation-Induced Lung Injury in Preterm Lambs. Frontiers in Physiology, 2020, 11, 119.	1.3	4
10	Brain inflammation and injury at 48 h is not altered by human amnion epithelial cells in ventilated preterm lambs. Pediatric Research, 2020, 88, 27-37.	1.1	11
11	Is Umbilical Cord Blood Therapy an Effective Treatment for Early Lung Injury in Growth Restriction?. Frontiers in Endocrinology, 2020, 11, 86.	1.5	Ο
12	Multiple doses of umbilical cord blood cells improve long-term brain injury in the neonatal rat. Brain Research, 2020, 1746, 147001.	1.1	21
13	Intranasal Delivery of Mesenchymal Stromal Cells Protects against Neonatal Hypoxic–Ischemic Brain Injury. International Journal of Molecular Sciences, 2019, 20, 2449.	1.8	43
14	Human Umbilical Cord Therapy Improves Long-Term Behavioral Outcomes Following Neonatal Hypoxic Ischemic Brain Injury. Frontiers in Physiology, 2019, 10, 283.	1.3	27
15	Umbilical cord blood versus mesenchymal stem cells for inflammation-induced preterm brain injury in fetal sheep. Pediatric Research, 2019, 86, 165-173.	1.1	36
16	Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury. Journal of Neuroinflammation, 2018, 15, 47.	3.1	74
17	Controlling the Effective Oxygen Tension Experienced by Cells Using a Dynamic Culture Technique for Hematopoietic Ex Vivo Expansion. Current Protocols in Stem Cell Biology, 2018, 44, 2A.11.1-2A.11.13.	3.0	2
18	Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatric Research, 2018, 83, 333-344.	1.1	40

#	Article	IF	CITATIONS
19	Human Umbilical Cord Blood Therapy Protects Cerebral White Matter from Systemic LPS Exposure in Preterm Fetal Sheep. Developmental Neuroscience, 2018, 40, 258-270.	1.0	37
20	Preterm umbilical cord blood derived mesenchymal stem/stromal cells protect preterm white matter brain development against hypoxia-ischemia. Experimental Neurology, 2018, 308, 120-131.	2.0	39
21	Human Amnion Epithelial Cells Protect against White Matter Brain Injury after Repeated Endotoxin Exposure in the Preterm Ovine Fetus. Cell Transplantation, 2017, 26, 541-553.	1.2	35
22	Effect of Human Amnion Epithelial Cells on the Acute Inflammatory Response in Fetal Sheep. Frontiers in Physiology, 2017, 8, 871.	1.3	4
23	Perinatal Brain Injury As a Consequence of Preterm Birth and Intrauterine Inflammation: Designing Targeted Stem Cell Therapies. Frontiers in Neuroscience, 2017, 11, 200.	1.4	59
24	Diffusion Tensor Imaging Colour Mapping Threshold for Identification of Ventilation-Induced Brain Injury after Intrauterine Inflammation in Preterm Lambs. Frontiers in Pediatrics, 2017, 5, 70.	0.9	3
25	Term vs. preterm cord blood cells for the prevention of preterm brain injury. Pediatric Research, 2017, 82, 1030-1038.	1.1	31
26	Human amnion epithelial cells modulate the inflammatory response to ventilation in preterm lambs. PLoS ONE, 2017, 12, e0173572.	1.1	22
27	Impact of Oxygen Levels on Human Hematopoietic Stem and Progenitor Cell Expansion. Stem Cells and Development, 2016, 25, 1604-1613.	1.1	16
28	Cord blood mononuclear cells prevent neuronal apoptosis in response to perinatal asphyxia in the newborn lamb. Journal of Physiology, 2016, 594, 1421-1435.	1.3	62
29	Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells. Experimental Neurology, 2016, 283, 179-187.	2.0	71
30	Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 112.	3.1	66
31	Amnion cell-mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response. Stem Cell Research and Therapy, 2015, 6, 8.	2.4	63
32	Evaluation of the safety and tolerability of a high-dose intravenous infusion of allogeneic mesenchymal precursor cells. Cytotherapy, 2015, 17, 1178-1187.	0.3	9
33	Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015, 17, 11-22.	5.2	1,101
34	Single β3-amino acid substitutions to MOG peptides suppress the development of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 277, 67-76.	1.1	9
35	Could Cord Blood Cell Therapy Reduce Preterm Brain Injury?. Frontiers in Neurology, 2014, 5, 200.	1.1	37
36	The Potential of Human Amnion Epithelial Cells as an Immunomodulatory and Neuroregenerative		4

Treatment for Multiple Sclerosis. , 2014, , 231-242.

#	Article	IF	CITATIONS
37	Distinct Immunomodulatory and Migratory Mechanisms Underpin the Therapeutic Potential of Human Mesenchymal Stem Cells in Autoimmune Demyelination. Cell Transplantation, 2013, 22, 1409-1425.	1.2	81
38	Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity. Brain, Behavior, and Immunity, 2013, 30, 103-114.	2.0	53
39	Umbilical Cord Blood Cells for Perinatal Brain Injury: The Right Cells at the Right Time?. , 0, , .		4