Aleix Gavaldà -Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1639245/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The endocrine role of brown adipose tissue: An update on actors and actions. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 31-41.	5.7	70
2	Posterior Cervical Brown Fat and CXCL14 Levels in the First Year of Life: Sex Differences and Association With Adiposity. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1148-e1158.	3.6	6
3	Bone Morphogenetic Protein-8B Levels at Birth and in the First Year of Life: Relation to Metabolic-Endocrine Variables and Brown Adipose Tissue Activity. Frontiers in Pediatrics, 2022, 10, 869581.	1.9	3
4	Adipose tissue aging partially accounts for fat alterations in HIV lipodystrophy. Adipocyte, 2022, 11, 143-152.	2.8	1
5	Brown fat resolves hepatic inflammation in obesity. Nature Metabolism, 2022, 4, 649-650.	11.9	1
6	FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Molecular Metabolism, 2021, 43, 101113.	6.5	18
7	The chemokine CXCL14 is negatively associated with obesity and concomitant type-2 diabetes in humans. International Journal of Obesity, 2021, 45, 706-710.	3.4	17
8	ARMCX3 Mediates Susceptibility to Hepatic Tumorigenesis Promoted by Dietary Lipotoxicity. Cancers, 2021, 13, 1110.	3.7	7
9	Increasing breast milk betaine modulates <i>Akkermansia</i> abundance in mammalian neonates and improves long-term metabolic health. Science Translational Medicine, 2021, 13, .	12.4	28
10	Adipose tissue knockdown of lysozyme reduces local inflammation and improves adipogenesis in high-fat diet-fed mice. Pharmacological Research, 2021, 166, 105486.	7.1	12
11	Mfn2 localization in the ER is necessary for its bioenergetic function and neuritic development. EMBO Reports, 2021, 22, e51954.	4.5	27
12	CERKL, a retinal dystrophy gene, regulates mitochondrial function and dynamics in the mammalian retina. Neurobiology of Disease, 2021, 156, 105405.	4.4	17
13	Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nature Metabolism, 2021, 3, 1415-1431.	11.9	45
14	Overexpression of CERKL Protects Retinal Pigment Epithelium Mitochondria from Oxidative Stress Effects. Antioxidants, 2021, 10, 2018.	5.1	7
15	A Role for Oncostatin M in the Impairment of Glucose Homeostasis in Obesity. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e337-e348.	3.6	15
16	The kallikrein–kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nature Communications, 2020, 11, 2132.	12.8	18
17	Brown Adipocytes Secrete GDF15 in Response to Thermogenic Activation. Obesity, 2019, 27, 1606-1616.	3.0	62
18	GPR120 controls neonatal brown adipose tissue thermogenic induction. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E742-E750.	3.5	12

#	Article	IF	CITATIONS
19	Parkin controls brown adipose tissue plasticity in response to adaptive thermogenesis. EMBO Reports, 2019, 20, .	4.5	29
20	Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nature Materials, 2019, 18, 397-405.	27.5	201
21	New insights into the secretory functions of brown adipose tissue. Journal of Endocrinology, 2019, 243, R19-R27.	2.6	126
22	Brown Adipokines. Handbook of Experimental Pharmacology, 2018, 251, 239-256.	1.8	13
23	Toward an Understanding of How Immune Cells Control Brown and Beige Adipobiology. Cell Metabolism, 2018, 27, 954-961.	16.2	155
24	Antimicrobial promotion of pig growth is associated with tissue-specific remodeling of bile acid signature and signaling. Scientific Reports, 2018, 8, 13671.	3.3	18
25	Developmental regulation of the intestinal FGF19 system in domestic pigs. American Journal of Physiology - Renal Physiology, 2018, 314, G647-G654.	3.4	10
26	CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation. Cell Metabolism, 2018, 28, 750-763.e6.	16.2	164
27	Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut, 2017, 66, 1818-1828.	12.1	118
28	The Lives and Times of Brown Adipokines. Trends in Endocrinology and Metabolism, 2017, 28, 855-867.	7.1	75
29	Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status. Open Biology, 2016, 6, 150108.	3.6	8
30	The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nature Communications, 2016, 7, 13479.	12.8	180
31	Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia, 2016, 59, 2208-2218.	6.3	41
32	Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Scientific Reports, 2015, 5, 13717.	3.3	31
33	Expression of human and mouse adenine nucleotide translocase (ANT) isoform genes in adipogenesis. International Journal of Biochemistry and Cell Biology, 2015, 64, 34-44.	2.8	5
34	Fibroblast growth factor-21, energy balance and obesity. Molecular and Cellular Endocrinology, 2015, 418, 66-73.	3.2	144
35	Expression of Adenine Nucleotide Translocase (ANT) Isoform Genes Is Controlled by PGCâ€1α Through Different Transcription Factors. Journal of Cellular Physiology, 2014, 229, 2126-2136.	4.1	13
36	The armadillo-repeat containing X-linked protein 3, ARMCX3, is a negative regulator of the browning of adipose tissue associated with obesity. International Journal of Obesity, 0, , .	3.4	0