Levi Carina Terribile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1639057/publications.pdf

Version: 2024-02-01

55 papers 1,621 citations

279798 23 h-index 330143 37 g-index

56 all docs 56
docs citations

56 times ranked 2635 citing authors

#	Article	IF	CITATIONS
1	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	4.5	231
2	Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography, 2013, 40, 345-358.	3.0	116
3	A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers. PLoS ONE, 2015, 10, e0129037.	2.5	96
4	A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a <scp>N</scp> eotropical seasonally dry forest tree species. Molecular Ecology, 2012, 21, 5845-5863.	3.9	94
5	Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography, 2014, 37, 637-647.	4.5	64
6	Hidden patterns of phylogenetic nonâ€stationarity overwhelm comparative analyses of niche conservatism and divergence. Global Ecology and Biogeography, 2010, 19, 916-926.	5.8	58
7	Phylogeography and ecological niche modelling, coupled with the fossil pollen record, unravel the demographic history of a Neotropical swamp palm through the Quaternary. Journal of Biogeography, 2014, 41, 673-686.	3.0	56
8	Ecological and evolutionary components of body size: geographic variation of venomous snakes at the global scale. Biological Journal of the Linnean Society, 0, 98, 94-109.	1.6	51
9	Global expansion of COVID-19 pandemic is driven by population size and airport connections. PeerJ, 0, 8, e9708.	2.0	51
10	Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecology and Biogeography, 2009, 18, 123-136.	5.8	49
11	Stability of Brazilian Seasonally Dry Forests under Climate Change: Inferences for Long-Term Conservation. American Journal of Plant Sciences, 2013, 04, 792-805.	0.8	43
12	Relaxed random walk model coupled with ecological niche modeling unravel the dispersal dynamics of a Neotropical savanna tree species in the deeper Quaternary. Frontiers in Plant Science, 2015, 6, 653.	3.6	40
13	Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Scientific Reports, 2019, 9, 8523.	3.3	38
14	A macroecological approach to evolutionary rescue and adaptation to climate change. Ecography, 2019, 42, 1124-1141.	4.5	36
15	Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology. Acta Oecologica, 2009, 35, 163-173.	1.1	30
16	Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Molecular Ecology Resources, 2015, 15, 1059-1066.	4.8	30
17	Recovering the demographical history of a Brazilian Cerrado tree species Caryocar brasiliense: coupling ecological niche modeling and coalescent analyses. Natureza A Conservacao, 2012, 10, 169-176.	2.5	30
18	How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. Brazilian Journal of Biology, 2010, 70, 263-269.	0.9	29

#	Article	IF	CITATIONS
19	Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia, 2009, 159, 617-626.	2.0	27
20	Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis. PLoS ONE, 2016, 11, e0159314.	2.5	26
21	The Potential Impact of White-Nose Syndrome on the Conservation Status of North American Bats. PLoS ONE, 2014, 9, e107395.	2.5	26
22	Conservation planning: a macroecological approach using the endemic terrestrial vertebrates of the Brazilian Cerrado. Oryx, 2008, 42, 567.	1.0	25
23	Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 546-556.	2.3	25
24	Spatial autocorrelation analysis and ecological niche modelling allows inference of range dynamics driving the population genetic structure of a Neotropical savanna tree. Journal of Biogeography, 2016, 43, 167-177.	3.0	25
25	Fossil record improves biodiversity risk assessment under future climate change scenarios. Diversity and Distributions, 2017, 23, 922-933.	4.1	25
26	Recovering species demographic history from multi-model inference: the case of a Neotropical savanna tree species. BMC Evolutionary Biology, 2014, 14, 213.	3.2	24
27	Multi-model inference in comparative phylogeography: an integrative approach based on multiple lines of evidence. Frontiers in Genetics, 2015, 6, 31.	2.3	24
28	Conservation biogeography of the Cerrado's wild edible plants under climate change: Linking biotic stability with agricultural expansion. American Journal of Botany, 2015, 102, 870-877.	1.7	23
29	Demographical history and palaeodistribution modelling show range shift towards Amazon Basin for a Neotropical tree species in the LGM. BMC Evolutionary Biology, 2016, 16, 213.	3.2	19
30	Patterns of genetic variability in central and peripheral populations of Dipteryx alata (Fabaceae) in the Brazilian Cerrado. Plant Systematics and Evolution, 2015, 301, 1315-1324.	0.9	18
31	Body Size, Extinction Risk and Knowledge Bias in New World Snakes. PLoS ONE, 2014, 9, e113429.	2.5	17
32	Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado. Biodiversity and Conservation, 2020, 29, 1555-1570.	2.6	17
33	Demographical expansion of Handroanthus ochraceus in the Cerrado during the Quaternary: implications for the genetic diversity of Neotropical trees. Biological Journal of the Linnean Society, 2018, 123, 561-577.	1.6	14
34	Stacked species distribution and macroecological models provide incongruent predictions of species richness for Drosophilidae in the Brazilian savanna. Insect Conservation and Diversity, 2017, 10, 415-424.	3.0	13
35	Threats for bird population restoration: A systematic review. Perspectives in Ecology and Conservation, 2018, 16, 68-73.	1.9	13
36	Reducing Wallacean shortfalls for the coralsnakes of the Micrurus lemniscatus species complex: Present and future distributions under a changing climate. PLoS ONE, 2018, 13, e0205164.	2.5	13

#	Article	IF	Citations
37	Comparing environmental and socioeconomic drivers of illegal capture of wild birds in Brazil. Environmental Conservation, 2020, 47, 46-51.	1.3	12
38	Phylogenetic autocorrelation and heritability of geographic range size, shape and position of fiddler crabs, genus <i>Uca</i> (Crustacea, Decapoda). Journal of Zoological Systematics and Evolutionary Research, 2010, 48, 102-108.	1.4	11
39	Global conservation strategies for two clades of snakes: combining taxonâ€specific goals with general prioritization schemes. Diversity and Distributions, 2009, 15, 841-851.	4.1	8
40	Potential geographic distribution of <i>Myotis ruber</i> (Chiroptera, Vespertilionidae), a threatened Neotropical bat species. Mammalia, 2010, 74, 333-338.	0.7	8
41	Evaluating the Effectiveness of Brazilian Protected Areas Under Climate Change. Tropical Conservation Science, 2017, 10, 194008291772202.	1.2	8
42	Back home? Uncertainties for returning seized animals to the sourceâ€areas under climate change. Global Change Biology, 2019, 25, 3242-3253.	9.5	8
43	ecoClimate, a new open-access repository with variables for the past, present and future climatic scenarios. Ecosistemas, 2015, 24, 88-92.	0.4	8
44	Historical range contractions can predict extinction risk in extant mammals. PLoS ONE, 2019, 14, e0221439.	2.5	6
45	The importance of sampling methods and landscape variation on explaining small mammal communities in a Neotropical ecotone region. Mammal Research, 2021, 66, 301-312.	1.3	5
46	Integrating phylogeny, environment and space to explore variation in macroecological traits of Viperidae and Elapidae (Squamata: Serpentes). Journal of Zoological Systematics and Evolutionary Research, 2012, 50, 202-209.	1.4	4
47	Geographical distribution of Stryphnodendron adstringens Mart. Coville (Fabaceae): modeling effects of climate change on past, present and future. Revista Brasileira De Botanica, 2019, 42, 53-61.	1.3	4
48	Effects of landscape and patch attributes on the functional diversity of medium and large-sized mammals in the Brazilian Cerrado. Mammal Research, 2020, 65, 301-308.	1.3	4
49	Climate suitability as indicative of invasion potential for the most seized bird species in Brazil. Journal for Nature Conservation, 2020, 58, 125890.	1.8	4
50	Elucidating the global elapid (Squamata) richness pattern under metabolic theory of ecology. Acta Oecologica, 2014, 56, 41-46.	1.1	3
51	How likely are adaptive responses to mitigate the threats of climate change for amphibians globally?. Frontiers of Biogeography, 2019, 11, .	1.8	3
52	Medium- and large-sized mammals in forest remnants of the southern Cerrado: diversity and ecology. Neotropical Biology and Conservation, 2019, 14, 29-42.	0.9	2
53	Isolation-by-ecology in a Neotropical savanna tree. Tree Genetics and Genomes, 2022, 18, .	1.6	2
54	Padrões espaciais da riqueza de espécies de viperÃdeos na América do Sul: temperatura ambiental vs. cinética-bioquÃmica. Acta Scientiarum - Biological Sciences, 2010, 32, .	0.3	1

#	Article	IF	CITATIONS
55	Implications of climate change for the distribution of the water opossum (Chironectes minimus): habitat loss and conservation opportunities. Mammalian Biology, 2021, 101, 729-737.	1.5	1