Darryl C De Vivo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1638652/publications.pdf Version: 2024-02-01

DADDYL C DE VIVO

#	Article	IF	CITATIONS
1	Revised upper limb module in type II and III spinal muscular atrophy: 24-month changes. Neuromuscular Disorders, 2022, 32, 36-42.	0.3	13
2	Distribution of Weight, Stature and Growth Status in Children and Adolescents with Spinal Muscular Atrophy: An Observational Retrospective Study in the United States. Muscle and Nerve, 2022, , .	1.0	2
3	A randomized, doubleâ€blind trial of triheptanoin for drugâ€resistant epilepsy in glucose transporter 1 deficiency syndrome. Epilepsia, 2022, 63, 1748-1760.	2.6	9
4	Visual memory failure presages conversion to <scp>MELAS</scp> phenotype. Annals of Clinical and Translational Neurology, 2022, , .	1.7	0
5	Scientific rationale for a higher dose of nusinersen. Annals of Clinical and Translational Neurology, 2022, 9, 819-829.	1.7	9
6	JARID2 haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. Genetics in Medicine, 2021, 23, 374-383.	1.1	13
7	Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. Journal of Clinical Investigation, 2021, 131, .	3.9	95
8	Reduction of Glut1 in the Neural Retina But Not the RPE Alleviates Polyol Accumulation and Normalizes Early Characteristics of Diabetic Retinopathy. Journal of Neuroscience, 2021, 41, 3275-3299.	1.7	14
9	Diminished muscle oxygen uptake and fatigue in spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2021, 8, 1086-1095.	1.7	11
10	Exploring triheptanoin as treatment for short chain enoyl CoA hydratase deficiency. Annals of Clinical and Translational Neurology, 2021, 8, 1151-1157.	1.7	2
11	Continuous Glucose Monitoring Facilitates Diazoxide Use in the Management of Glut1 Deficiency Syndrome. Journal of the Endocrine Society, 2021, 5, A698-A699.	0.1	0
12	Nusinersen in pediatric and adult patients with type III spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2021, 8, 1622-1634.	1.7	27
13	Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study. The Lancet Child and Adolescent Health, 2021, 5, 491-500.	2.7	47
14	Age related treatment effect in type II Spinal Muscular Atrophy pediatric patients treated with nusinersen. Neuromuscular Disorders, 2021, 31, 596-602.	0.3	29
15	Different trajectories in upper limb and gross motor function in spinal muscular atrophy. Muscle and Nerve, 2021, 64, 552-559.	1.0	18
16	Psychometric properties of the PEDI-CAT for children and youth with spinal muscular atrophy. Journal of Pediatric Rehabilitation Medicine, 2021, 14, 451-461.	0.3	2
17	Nusinersen Treatment in Adults With Spinal Muscular Atrophy. Neurology: Clinical Practice, 2021, 11, e317-e327.	0.8	35
18	Hypotonia–cystinuria <i>2p21</i> deletion syndrome: Intrafamilial variability of clinical expression. Annals of Clinical and Translational Neurology, 2021, 8, 2199-2204.	1.7	3

#	Article	IF	CITATIONS
19	Exploring diazoxide and continuous glucose monitoring as treatment for Glut1 deficiency syndrome. Annals of Clinical and Translational Neurology, 2021, 8, 2205-2209.	1.7	8
20	Limitations of 6â€minute walk test reference values for spinal muscular atrophy. Muscle and Nerve, 2020, 61, 375-382.	1.0	6
21	Age and baseline values predict 12 and 24-month functional changes in type 2 SMA. Neuromuscular Disorders, 2020, 30, 756-764.	0.3	25
22	Neuroanatomical Models of Muscle Strength and Relationship to Ambulatory Function in Spinal Muscular Atrophy. Journal of Neuromuscular Diseases, 2020, 7, 459-466.	1.1	0
23	Scoliosis Surgery Significantly Impacts Motor Abilities in Higher-functioning Individuals with Spinal Muscular Atrophy1. Journal of Neuromuscular Diseases, 2020, 7, 183-192.	1.1	7
24	RESTORE: A Prospective Multinational Registry of Patients with Genetically Confirmed Spinal Muscular Atrophy - Rationale and Study Design. Journal of Neuromuscular Diseases, 2020, 7, 145-152.	1.1	17
25	Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open, 2020, 5, 354-365.	1.3	142
26	Transient hyperreflexia. Neurology: Clinical Practice, 2020, 10, e66-e67.	0.8	3
27	Longitudinal natural history of type I spinal muscular atrophy: a critical review. Orphanet Journal of Rare Diseases, 2020, 15, 84.	1.2	45
28	<i>VAC14</i> syndrome in two siblings with retinitis pigmentosa and neurodegeneration with brain iron accumulation. Journal of Physical Education and Sports Management, 2019, 5, a003715.	0.5	10
29	Exploring mTOR inhibition as treatment for mitochondrial disease. Annals of Clinical and Translational Neurology, 2019, 6, 1877-1881.	1.7	40
30	Nusinersen improves walking distance and reduces fatigue in laterâ€onset spinal muscular atrophy. Muscle and Nerve, 2019, 60, 409-414.	1.0	62
31	Therapeutic strategies for glucose transporter 1 deficiency syndrome. Annals of Clinical and Translational Neurology, 2019, 6, 1923-1932.	1.7	44
32	Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscular Disorders, 2019, 29, 842-856.	0.3	401
33	Revised upper limb module for spinal muscular atrophy: 12 month changes. Muscle and Nerve, 2019, 59, 426-430.	1.0	61
34	Nusinersen in later-onset spinal muscular atrophy. Neurology, 2019, 92, e2492-e2506.	1.5	183
35	Perceived Fatigue in Spinal Muscular Atrophy: A Pilot Study. Journal of Neuromuscular Diseases, 2019, 6, 109-117.	1.1	30
36	Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. New England Journal of Medicine, 2018, 378, 625-635.	13.9	977

#	Article	IF	CITATIONS
37	Ambulatory function in spinal muscular atrophy: Age-related patterns of progression. PLoS ONE, 2018, 13, e0199657.	1.1	65
38	Evaluator Training and Reliability for SMA Global Nusinersen Trials1. Journal of Neuromuscular Diseases, 2018, 5, 159-166.	1.1	36
39	Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nature Communications, 2017, 8, 14152.	5.8	91
40	Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurology, 2017, 17, 39.	0.8	102
41	Paroxysmal eye–head movements in Glut1 deficiency syndrome. Neurology, 2017, 88, 1666-1673.	1.5	43
42	Gait assessment with solesound instrumented footwear in spinal muscular atrophy. Muscle and Nerve, 2017, 56, 230-236.	1.0	20
43	Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle and Nerve, 2017, 55, 869-874.	1.0	166
44	Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLoS ONE, 2017, 12, e0172346.	1.1	67
45	Six-minute walk test is reliable and valid in spinal muscular atrophy. Muscle and Nerve, 2016, 54, 836-842.	1.0	98
46	Rasch analysis of the Pediatric Evaluation of Disability Inventory–computer adaptive test (PEDI AT) item bank for children and young adults with spinal muscular atrophy. Muscle and Nerve, 2016, 54, 1097-1107.	1.0	17
47	A De Novo Mutation in MTND6 Causes Generalized Dystonia in 2 Unrelated Children. Child Neurology Open, 2016, 3, 2329048X1562793.	0.5	4
48	Physical therapy services received by individuals with spinal muscular atrophy (SMA). Journal of Pediatric Rehabilitation Medicine, 2016, 9, 35-44.	0.3	13
49	Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet, The, 2016, 388, 3017-3026.	6.3	801
50	Disruption of Glut1 in Hematopoietic Stem Cells Prevents Myelopoiesis and Enhanced Glucose Flux in Atheromatous Plaques of <i>ApoE</i> ^{â^'/â^'} Mice. Circulation Research, 2016, 118, 1062-1077.	2.0	93
51	Analysis of Gait Disturbance in Glut 1 Deficiency Syndrome. Journal of Child Neurology, 2016, 31, 1483-1488.	0.7	2
52	Maternal Calorie Restriction Causing Uteroplacental Insufficiency Differentially Affects Mammalian Placental Glucose and Leucine Transport Molecular Mechanisms. Endocrinology, 2016, 157, 4041-4054.	1.4	25
53	Developmental milestones in type I spinal muscular atrophy. Neuromuscular Disorders, 2016, 26, 754-759.	0.3	96
54	N-acetylaspartate supports the energetic demands of developmental myelination via oligodendroglial aspartoacylase. Neurobiology of Disease, 2016, 96, 323-334.	2.1	28

#	Article	IF	CITATIONS
55	Diagnosing Glucose Transporter 1 Deficiency at Initial Presentation Facilitates Early Treatment. Journal of Pediatrics, 2016, 171, 220-226.	0.9	33
56	Functional cellular analyses reveal energy metabolism defect and mitochondrial DNA depletion in a case of mitochondrial aconitase deficiency. Molecular Genetics and Metabolism, 2016, 118, 28-34.	0.5	32
57	Results from a phase 1 study of nusinersen (ISIS-SMN _{Rx}) in children with spinal muscular atrophy. Neurology, 2016, 86, 890-897.	1.5	506
58	Patterns of disease progression in type 2 and 3 SMA: Implications for clinical trials. Neuromuscular Disorders, 2016, 26, 126-131.	0.3	142
59	Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-Like Episodes (MELAS): A Case Report and Critical Reappraisal of Treatment Options. Pediatric Neurology, 2016, 56, 59-61.	1.0	37
60	Movement Disorders in Glucose Transporter Type 1 Deficiency. Journal of Pediatric Neurology, 2015, 13, 168-173.	0.0	0
61	Single-Blind, Randomized, Controlled Clinical Trial of Exercise in Ambulatory Spinal Muscular Atrophy: Why are the Results Negative?. Journal of Neuromuscular Diseases, 2015, 2, 463-470.	1.1	33
62	Old measures and new scores in spinal muscular atrophy patients. Muscle and Nerve, 2015, 52, 435-437.	1.0	6
63	Spinal muscular atrophy functional composite score: A functional measure in spinal muscular atrophy. Muscle and Nerve, 2015, 52, 942-947.	1.0	26
64	CoQ10 Deficiency Is Not a Common Finding in GLUT1 Deficiency Syndrome. JIMD Reports, 2015, 29, 47-52.	0.7	7
65	Long-Term Clinical Course of Glut1 Deficiency Syndrome. Journal of Child Neurology, 2015, 30, 160-169.	0.7	86
66	GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nature Neuroscience, 2015, 18, 521-530.	7.1	496
67	Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency. Epilepsy Research, 2015, 110, 206-215.	0.8	31
68	Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease. Neuron, 2015, 88, 499-513.	3.8	258
69	A Randomized, Controlled Clinical Trial of Exercise in Patients with Spinal Muscular Atrophy: Methods and Baseline Characteristics. Journal of Neuromuscular Diseases, 2014, 1, 151-161.	1.1	14
70	Neurodegeneration in spinal muscular atrophy: from disease phenotype and animal models to therapeutic strategies and beyond. Future Neurology, 2014, 9, 49-65.	0.9	44
71	Long Survival in Patients With Leigh Syndrome and the m.10191T>C Mutation in <i>MT-ND3</i> . Journal of Child Neurology, 2014, 29, NP105-NP110.	0.7	16
72	Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology, 2014, 82, 798-805.	1.5	39

#	Article	IF	CITATIONS
73	Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology, 2014, 83, 810-817.	1.5	367
74	A Randomized, Controlled Clinical Trial of Exercise in Patients with Spinal Muscular Atrophy: Methods and Baseline Characteristics. Journal of Neuromuscular Diseases, 2014, 1, 151-161.	1.1	6
75	Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency. Annals of Neurology, 2010, 67, 31-40.	2.8	33
76	Adiposity is increased among high-functioning, non-ambulatory patients with spinal muscular atrophy. Neuromuscular Disorders, 2010, 20, 448-452.	0.3	47
77	Protean Phenotypic Features of the A3243G Mitochondrial DNA Mutation. Archives of Neurology, 2009, 66, 85-91.	4.9	53
78	Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy. Neuromuscular Disorders, 2009, 19, 391-396.	0.3	74
79	Glucose transporter protein syndromes. International Review of Neurobiology, 2002, 51, 259-IN10.	0.9	25
80	Glucose transporter 1 deficiency syndrome and other glycolytic defects. Journal of Child Neurology, 2002, 17 Suppl 3, 3S15-23; discussion 3S24-5.	0.7	28
81	Selective deficits in verbal working memory associated with a known genetic etiology: The neuropsychological profile of Duchenne muscular dystrophy. Journal of the International Neuropsychological Society, 2001, 7, 45-54.	1.2	101
82	Cerebral energy failure. Current Neurology and Neuroscience Reports, 2001, 1, 203-204.	2.0	5
83	Navajo neurohepatopathy: A mitochondrial DNA depletion syndrome?. Hepatology, 2001, 34, 116-120.	3.6	57
84	Glucose Transporter Type 1 Deficiency Syndrome (Glut1DS): Methylxanthines Potentiate GLUT1 Haploinsufficiency In Vitro. Pediatric Research, 2001, 50, 254-260.	1.1	58
85	Mutational analysis of GLUT1 (SLC2A1) in Glut-1 Deficiency Syndrome. Human Mutation, 2000, 16, 224-231.	1.1	143
86	Defective glucose transport across brain tissue barriers: a newly recognized neurological syndrome. Neurochemical Research, 1999, 24, 587-594.	1.6	100
87	Solving the COX Puzzle. Annals of Neurology, 1999, 46, 142-143.	2.8	2
88	Erythrocyte 3-O-methyl-D-glucose uptake assay for diagnosis of glucose-transporter-protein syndrome. Journal of Clinical Laboratory Analysis, 1999, 13, 116-121.	0.9	86
89	Erythrocyte 3-O-methyl-D-glucose uptake assay for diagnosis of glucose-transporter-protein syndrome. , 1999, 13, 116.		1
90	GLUT1-Deficiency: Barbiturates Potentiate Haploinsufficiency in Vitro. Pediatric Research, 1999, 46, 677-677.	1.1	59

#	Article	IF	CITATIONS
91	Leigh syndrome: Historical perspective and clinical variations. BioFactors, 1998, 7, 269-271.	2.6	15
92	l-Carnitine Supplementation in Childhood Epilepsy: Current Perspectives. Epilepsia, 1998, 39, 1216-1225.	2.6	172
93	GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nature Genetics, 1998, 18, 188-191.	9.4	349
94	The Ketogenic Diet Revisited: Back to the Future. Epilepsia, 1997, 38, 743-749.	2.6	124
95	Deficient Muscle Carnitine Transport in Primary Carnitine Deficiency. Pediatric Research, 1997, 42, 583-587.	1.1	38
96	Clinical Heterogeneity Associated with the Mitochondrial DNA T8993C Point Mutation. Pediatric Research, 1996, 39, 914-917.	1.1	56
97	Pyruvate dehydrogenase deficiency: Molecular basis for intrafamilial heterogeneity. Annals of Neurology, 1994, 36, 83-89.	2.8	27
98	Cerebrospinal fluid polyamines: Biochemical markers of malignant childhood brain tumors. Annals of Neurology, 1986, 19, 360-364.	2.8	13
99	Cholesterol and phospholipids in cultured skin fibroblasts from patients with dystonia. Annals of Neurology, 1984, 16, 250-252.	2.8	8
100	Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome. Annals of Neurology, 1984, 16, 481-488.	2.8	1,128