Joonsoo Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1638524/publications.pdf

Version: 2024-02-01

109321 161849 5,519 56 35 54 citations h-index g-index papers 68 68 68 10762 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The ImmGen consortium OpenSource T cell project. Nature Immunology, 2022, 23, 643-644.	14.5	3
2	Activation of CD81 ⁺ skin ILC2s by cold-sensing TRPM8 ⁺ neuron-derived signals maintains cutaneous thermal homeostasis. Science Immunology, 2022, 7, .	11.9	6
3	Epithelial HNF4A shapes the intraepithelial lymphocyte compartment via direct regulation of immune signaling molecules. Journal of Experimental Medicine, 2022, 219, .	8.5	12
4	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
5	Neonatal-derived IL-17 producing dermal $\hat{I}^3\hat{I}$ T cells are required to prevent spontaneous atopic dermatitis. ELife, 2020, 9, .	6.0	34
6	$\hat{I}^3\hat{I}$ TCR-independent origin of neonatal $\hat{I}^3\hat{I}$ T cells prewired for IL-17 production. Current Opinion in Immunology, 2019, 58, 60-67.	5 . 5	12
7	Interleukin-17-Producing î³î´T Cells Originate from SOX13+ Progenitors that Are Independent of î³ÎTCR Signaling. Immunity, 2018, 49, 857-872.e5.	14.3	74
8	SOX4 controls invariant NKT cell differentiation by tuning TCR signaling. Journal of Experimental Medicine, 2018, 215, 2887-2900.	8.5	35
9	Hypercholesterolemia Increases Colorectal Cancer Incidence by Reducing Production of NKT and γδT Cells from Hematopoietic Stem Cells. Cancer Research, 2017, 77, 2351-2362.	0.9	46
10	Orchestration of T Cell Development by Common \hat{l}^3 Chain Cytokines. , 2016, , 192-200.		0
11	Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors. Annual Review of Immunology, 2015, 33, 505-538.	21.8	48
12	TRIM13 Is a Negative Regulator of MDA5-Mediated Type I Interferon Production. Journal of Virology, 2014, 88, 10748-10757.	3.4	76
13	The Necroptosis Adaptor RIPK3 Promotes Injury-Induced Cytokine Expression and Tissue Repair. Immunity, 2014, 41, 567-578.	14.3	199
14	Innate PLZF+CD4+ \hat{l} ± \hat{l} 2 T Cells Develop and Expand in the Absence of Itk. Journal of Immunology, 2014, 193, 673-687.	0.8	24
15	Regulation of Tissue-Dependent Differences in CD8 ⁺ T Cell Apoptosis during Viral Infection. Journal of Virology, 2014, 88, 9490-9503.	3.4	3
16	CD28 and ITK signals regulate autoreactive T cell trafficking. Nature Medicine, 2013, 19, 1632-1637.	30.7	37
17	Immunological Genome Project and systems immunology. Trends in Immunology, 2013, 34, 602-609.	6.8	141
18	Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nature Immunology, 2013, 14, 90-99.	14.5	106

#	Article	IF	CITATIONS
19	A Network of High-Mobility Group Box Transcription Factors Programs Innate Interleukin-17 Production. Immunity, 2013, 38, 681-693.	14.3	153
20	The transcriptional landscape of $\hat{l}\pm\hat{l}^2$ T cell differentiation. Nature Immunology, 2013, 14, 619-632.	14.5	256
21	Identification of transcriptional regulators in the mouse immune system. Nature Immunology, 2013, 14, 633-643.	14.5	179
22	<scp>SMAD</scp> regulatory networks construct a balanced immune system. Immunology, 2013, 139, 1-10.	4.4	74
23	The Tec Kinase ITK Regulates Thymic Expansion, Emigration, and Maturation of $\hat{l}^3\hat{l}'$ NKT Cells. Journal of Immunology, 2013, 190, 2659-2669.	0.8	24
24	IL-7: The global builder of the innate lymphoid network and beyond, one niche at a time. Seminars in Immunology, 2012, 24, 190-197.	5.6	34
25	Intrathymic programming of effector fates in three molecularly distinct $\hat{I}^3\hat{I}$ T cell subtypes. Nature Immunology, 2012, 13, 511-518.	14.5	185
26	Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9777-9782.	7.1	294
27	SMAD2 Is Essential for TGFÎ ² -mediated Th17 Cell Generation*. Journal of Biological Chemistry, 2010, 285, 29044-29048.	3.4	74
28	Cutting Edge: Intrinsic Programming of Thymic $\hat{I}^3\hat{I}$ T Cells for Specific Peripheral Tissue Localization. Journal of Immunology, 2010, 185, 7156-7160.	0.8	40
29	Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1524-1528.	7.1	209
30	Disorderly conduct in γδ versus αβ T cell lineage commitment. Seminars in Immunology, 2010, 22, 222-227.	5.6	16
31	Cutting Edge: <i>Dab2</i> ls a FOXP3 Target Gene Required for Regulatory T Cell Function. Journal of Immunology, 2009, 183, 4192-4196.	0.8	29
32	CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. Journal of Experimental Medicine, 2009, 206, 721-721.	8.5	2
33	Tec kinase Itk in $\hat{I}^3\hat{I}$ T cells is pivotal for controlling IgE production in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8308-8313.	7.1	112
34	The Surprising Discovery That $TGF\hat{l}^2$ Specifically Induces the IgA Class Switch. Journal of Immunology, 2009, 182, 5-7.	0.8	90
35	CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. Journal of Experimental Medicine, 2009, 206, 421-434.	8.5	222
36	The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.	14.5	1,576

#	Article	IF	CITATIONS
37	Deletion of p37lng1 in Mice Reveals a p53-Independent Role for Ing1 in the Suppression of Cell Proliferation, Apoptosis, and Tumorigenesis. Cancer Research, 2007, 67, 2054-2061.	0.9	75
38	Regulation of $\hat{l}^3\hat{l}'$ Versus $\hat{l}\pm \tilde{A}\ddot{V}$ T Lymphocyte Differentiation by the Transcription Factor SOX13. Science, 2007, 315, 230-233.	12.6	156
39	Molecular events that regulate $\hat{l}\pm\hat{l}^2$ versus $\hat{l}^3\hat{l}$ T cell lineage commitment: old suspects, new players and different game plans. Current Opinion in Immunology, 2007, 19, 169-175.	5.5	11
40	Integrated morphogen signal inputs in $\hat{l}^3\hat{l}$ versus $\hat{l}\pm\hat{l}^2$ T-cell differentiation. Immunological Reviews, 2007, 215, 32-45.	6.0	12
41	Noncanonical Wnt signaling promotes apoptosis in thymocyte development. Journal of Experimental Medicine, 2007, 204, 3077-3084.	8.5	49
42	Noncanonical Wnt signaling promotes apoptosis in thymocyte development. Journal of Cell Biology, 2007, 179, i17-i17.	5.2	0
43	Interleukin 15 controls the generation of the restricted T cell receptor repertoire of $\hat{l}^3\hat{l}'$ intestinal intraepithelial lymphocytes. Nature Immunology, 2005, 6, 1263-1271.	14.5	59
44	STAT5 Is Required for Thymopoiesis in a Development Stage-Specific Manner. Journal of Immunology, 2004, 173, 2307-2314.	0.8	43
45	Cytokine functions in the formative stages of a lymphocyte's life. Current Opinion in Immunology, 2004, 16, 180-190.	5.5	76
46	The lymphoproliferative defect in CTLA-4–deficient mice is ameliorated by an inhibitory NK cell receptor. Blood, 2002, 99, 4509-4516.	1.4	10
47	Molecular determinants of TCR expression and selection. Current Opinion in Immunology, 2001, 13, 232-241.	5.5	53
48	Evidence That $\hat{l}^3\hat{l}'$ versus $\hat{l}\pm\hat{l}^2$ T Cell Fate Determination Is Initiated Independently of T Cell Receptor Signaling. Journal of Experimental Medicine, 2001, 193, 689-698.	8.5	102
49	A Novel Element Upstream of the Vγ2 Gene in the Murine T Cell Receptor γ Locus Cooperates with the 3′ Enhancer to Act as a Locus Control Region. Journal of Experimental Medicine, 1999, 190, 669-680.	8.5	28
50	Defective Development of γ/δT Cells in Interleukin 7 Receptor–Deficient Mice Is Due to Impaired Expression of T Cell Receptor γ Genes. Journal of Experimental Medicine, 1999, 190, 973-982.	8.5	61
51	The Developmental Fate of T Cells Is Critically Influenced by TCRγδExpression. Immunity, 1998, 8, 427-438.	14.3	71
52	T Cell Receptor î³ Gene Regulatory Sequences Prevent the Function of a Novel TCRî³/pTî± Pre–T Cell Receptor. Immunity, 1998, 8, 713-721.	14.3	35
53	Events that regulate differentiation of $\hat{l}\pm\hat{l}^2$ TCR+and $\hat{l}^3\hat{l}$ TCR+T cells from a common precursor. Seminars in Immunology, 1997, 9, 171-179.	5.6	65
54	Expression of exogenous p59fyn modulates signaling in an immature B cell line, WEHI-231. Immunology Letters, 1996, 51, 181-185.	2.5	1

#	Article	IF	CITATIONS
55	Evidence that productive rearrangements of TCR \hat{I}^3 genes influence the commitment of progenitor cells to differentiate into $\hat{I}\pm\hat{I}^2$ or $\hat{I}^3\hat{I}$ T cells. European Journal of Immunology, 1995, 25, 2706-2709.	2.9	51
56	Homozygous deletion of a DNA marker from chromosome 11p13 in sporadic Wilms tumor. Genomics, 1988, 3, 25-31.	2.9	81