Michael J Krische

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1638136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interconversion of single and double helices formed from synthetic molecular strands. Nature, 2000, 407, 720-723.	13.7	682
2	Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl Compounds and Imines. Chemical Reviews, 2018, 118, 6026-6052.	23.0	459
3	Acyclic Quaternary Carbon Stereocenters via Enantioselective Transition Metal Catalysis. Chemical Reviews, 2017, 117, 12564-12580.	23.0	348
4	Enantioselective C-H Crotylation of Primary Alcohols via Hydrohydroxyalkylation of Butadiene. Science, 2012, 336, 324-327.	6.0	320
5	Catalytic Enantioselective CH Functionalization of Alcohols by Redoxâ€Triggered Carbonyl Addition: Borrowing Hydrogen, Returning Carbon. Angewandte Chemie - International Edition, 2014, 53, 9142-9150.	7.2	301
6	Metal-catalyzed reductive coupling of olefin-derived nucleophiles: Reinventing carbonyl addition. Science, 2016, 354, .	6.0	291
7	Catalytic Carbonyl Addition through Transfer Hydrogenation: A Departure from Preformed Organometallic Reagents. Angewandte Chemie - International Edition, 2009, 48, 34-46.	7.2	286
8	Enantioselective Iridium-Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level via Transfer Hydrogenative Coupling of Allyl Acetate: Departure from Chirally Modified Allyl Metal Reagents in Carbonyl Addition. Journal of the American Chemical Society, 2008, 130, 14891-14899.	6.6	269
9	Enantiomerically Enriched Allylic Alcohols and Allylic Amines via C–C Bond-Forming Hydrogenation: Asymmetric Carbonyl and Imine Vinylation. Accounts of Chemical Research, 2007, 40, 1394-1401.	7.6	267
10	Enantioselective Reductive Coupling of 1,3-Enynes to Heterocyclic Aromatic Aldehydes and Ketones via Rhodium-Catalyzed Asymmetric Hydrogenation:Â Mechanistic Insight into the Role of BrÃ,nsted Acid Additives. Journal of the American Chemical Society, 2006, 128, 16448-16449.	6.6	248
11	Organocatalytic Michael Cycloisomerization of Bis(enones): The Intramolecular Rauhutâ^'Currier Reaction. Journal of the American Chemical Society, 2002, 124, 2402-2403.	6.6	241
12	Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier. Accounts of Chemical Research, 2017, 50, 2371-2380.	7.6	234
13	Catalytic Enone Cycloallylation via Concomitant Activation of Latent Nucleophilic and Electrophilic Partners:Â Merging Organic and Transition Metal Catalysis. Journal of the American Chemical Society, 2003, 125, 7758-7759.	6.6	226
14	Enantioselective Iridium-Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Using Allyl Acetate as an Allyl Metal Surrogate. Journal of the American Chemical Society, 2008, 130, 6340-6341.	6.6	225
15	Catalytic intermolecular hydroacylation of C–C π-bonds in the absence of chelation assistance. Chemical Science, 2012, 3, 2202.	3.7	224
16	Iridium-catalysed direct C–C coupling of methanol and allenes. Nature Chemistry, 2011, 3, 287-290.	6.6	218
17	Phosphine-Catalyzed Regiospecific Allylic Amination and Dynamic Kinetic Resolution of Moritaâ^'Baylisâ~'Hillman Acetates. Organic Letters, 2004, 6, 1337-1339.	2.4	187
18	Chiral-Anion-Dependent Inversion of Diastereo- and Enantioselectivity in Carbonyl Crotylation via Ruthenium-Catalyzed Butadiene Hydrohydroxyalkylation. Journal of the American Chemical Society, 2012, 134, 20628-20631.	6.6	187

#	Article	IF	CITATIONS
19	Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium-Catalyzed Câ [~] C Bond-Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones. Journal of the American Chemical Society, 2008, 130, 14120-14122.	6.6	185
20	Ruthenium-Catalyzed Câ^'C Bond Forming Transfer Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to Preformed Allyl Metal Reagents. Journal of the American Chemical Society, 2008, 130, 6338-6339.	6.6	182
21	Hydrogen bonding in noncovalent synthesis: selectivity and the directed organization of molecular strands. Tetrahedron, 2001, 57, 1139-1159.	1.0	172
22	Intramolecular Organocatalytic[3+2] Dipolar Cycloaddition: Stereospecific Cycloaddition and the Total Synthesis of (±)-Hirsutene. Angewandte Chemie - International Edition, 2003, 42, 5855-5857.	7.2	171
23	<i>anti</i> -Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a Surrogate to Preformed Crotylmetal Reagents. Journal of the American Chemical Society, 2009, 131, 2514-2520.	6.6	170
24	Highly Enantioselective Direct Reductive Coupling of Conjugated Alkynes and α-Ketoesters via Rhodium-Catalyzed Asymmetric Hydrogenation. Journal of the American Chemical Society, 2006, 128, 718-719.	6.6	169
25	Catalytic Câ^'C Bond Formation via Capture of Hydrogenation Intermediates. Accounts of Chemical Research, 2004, 37, 653-661.	7.6	167
26	Hydrogen-Mediated Câ^'C Bond Formation:Â A Broad New Concept in Catalytic Câ^'C Coupling1. Journal of Organic Chemistry, 2007, 72, 1063-1072.	1.7	167
27	Regio- and Stereoselective Construction of ?-Butenolides through Phosphine-Catalyzed Substitution of Morita-Baylis-Hillman Acetates: An Organocatalytic Allylic Alkylation. Angewandte Chemie - International Edition, 2004, 43, 6689-6691.	7.2	166
28	Alkynes as Synthetic Equivalents to Stabilized Wittig Reagents:  Intra- and Intermolecular Carbonyl Olefinations Catalyzed by Ag(I), BF3, and HBF4. Organic Letters, 2005, 7, 2493-2495.	2.4	162
29	1, <i>n</i> â€Glycols as Dialdehyde Equivalents in Iridiumâ€Catalyzed Enantioselective Carbonyl Allylation and Iterative Twoâ€Directional Assembly of 1,3â€Polyols. Angewandte Chemie - International Edition, 2009, 48, 5018-5021.	7.2	162
30	Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins: Iridium atalyzed CC Bondâ€Forming Transfer Hydrogenation. Angewandte Chemie - International Edition, 2009, 48, 6313-6316.	7.2	160
31	Enantioselective Carbonyl Reverse Prenylation from the Alcohol or Aldehyde Oxidation Level Employing 1,1-Dimethylallene as the Prenyl Donor. Journal of the American Chemical Society, 2009, 131, 6916-6917.	6.6	158
32	Diastereo- and Enantioselective Catalytic Carbometallative Aldol Cycloreduction:Â Tandem Conjugate Additionâ^'Aldol Cyclization. Journal of the American Chemical Society, 2003, 125, 1110-1111.	6.6	153
33	Catalytic Câ^'C Coupling via Transfer Hydrogenation:  Reverse Prenylation, Crotylation, and Allylation from the Alcohol or Aldehyde Oxidation Level. Journal of the American Chemical Society, 2007, 129, 15134-15135.	6.6	153
34	Polyketide construction via hydrohydroxyalkylation and related alcohol C–H functionalizations: reinventing the chemistry of carbonyl addition. Natural Product Reports, 2014, 31, 504.	5.2	149
35	The Utilization of Persistent H-Bonding Motifs in the Self-Assembly of Supramolecular Architectures. Structure and Bonding, 2000, , 3-29.	1.0	148
36	Hydrogen-Mediated Reductive Coupling of Conjugated Alkynes with Ethyl (N-Sulfinyl)iminoacetates:Â Synthesis of Unnatural α-Amino Acids via Rhodium-Catalyzed C⒒C Bond Forming Hydrogenation. Journal of the American Chemical Society, 2005, 127, 11269-11276.	6.6	147

#	Article	IF	CITATIONS
37	Asymmetric Total Synthesis of the Iridoid β-Glucoside (+)-Geniposide via Phosphine Organocatalysis. Organic Letters, 2009, 11, 1849-1851.	2.4	144
38	Total Synthesis of Bryostatin 7 <i>via</i> C–C Bond-Forming Hydrogenation. Journal of the American Chemical Society, 2011, 133, 13876-13879.	6.6	143
39	Enantioselective Alcohol C–H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. Journal of the American Chemical Society, 2016, 138, 5467-5478.	6.6	143
40	On Asymmetric Induction in Allylic Alkylation via Enantiotopic Facial Discrimination. Journal of the American Chemical Society, 1996, 118, 6297-6298.	6.6	135
41	Diastereoselective Cycloreductions and Cycloadditions Catalyzed by Co(dpm)2-Silane (dpm =) Tj ETQq1 1 0.784. Radical Pathways. Journal of the American Chemical Society, 2002, 124, 9448-9453.	314 rgBT / 6.6	Overlock 10 134
42	Diastereo- and Enantioselective Ruthenium-Catalyzed Hydrohydroxyalkylation of 2-Silyl-butadienes: Carbonyl <i>syn</i> -Crotylation from the Alcohol Oxidation Level. Journal of the American Chemical Society, 2011, 133, 10582-10586.	6.6	132
43	Template-Induced and Molecular Recognition Directed Hierarchical Generation of Supramolecular Assemblies from Molecular Strands. Chemistry - A European Journal, 2000, 6, 1938-1946.	1.7	131
44	Enantioselective Iridium-Catalyzed Imine Vinylation:  Optically Enriched Allylic Amines via Alkyneâ^'Imine Reductive Coupling Mediated by Hydrogen. Journal of the American Chemical Society, 2007, 129, 12644-12645.	6.6	131
45	Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation. Topics in Organometallic Chemistry, 2011, 34, 107-138.	0.7	131
46	Copper-Catalyzed Tandem Conjugate Additionâ^'Electrophilic Trapping:Â Ketones, Esters, and Nitriles as Terminal Electrophiles. Journal of the American Chemical Society, 2004, 126, 4528-4529.	6.6	128
47	Enantioselective Reductive Coupling of Acetylene toN-Arylsulfonyl Imines via Rhodium Catalyzed Câ^'C Bond-Forming Hydrogenation:Â (Z)-Dienyl Allylic Amines. Journal of the American Chemical Society, 2007, 129, 7242-7243.	6.6	128
48	Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed Câ^'C Bond-Forming Transfer Hydrogenation. Journal of the American Chemical Society, 2009, 131, 2066-2067.	6.6	127
49	Catalytic Diastereoselective Synthesis of Diquinanes from Acyclic Precursors. Journal of the American Chemical Society, 2003, 125, 3682-3683.	6.6	126
50	Enantioselective Formation of All-Carbon Quaternary Centers via C–H Functionalization of Methanol: Iridium-Catalyzed Diene Hydrohydroxymethylation. Journal of the American Chemical Society, 2016, 138, 14210-14213.	6.6	126
51	Paraformaldehyde and Methanol as C ₁ â€Feedstocks in Metal atalyzed CC Couplings of Ï€â€Unsaturated Reactants: Beyond Hydroformylation. Angewandte Chemie - International Edition, 2015, 54, 3267-3274.	7.2	125
52	Asymmetric Catalysis Special Feature Part I: Desymmetrization of enone-diones via rhodium-catalyzed diastereo- and enantioselective tandem conjugate addition-aldol cyclization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5421-5424.	3.3	123
53	Reductive Generation of Enolates from Enones Using Elemental Hydrogen:Â Catalytic Câ^'C Bond Formation under Hydrogenative Conditions. Journal of the American Chemical Society, 2002, 124, 15156-15157.	6.6	122
54	Iridium-Catalyzed Câ^'C Coupling via Transfer Hydrogenation:  Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level Employing 1,3-Cyclohexadiene. Organic Letters, 2008, 10, 1033-1035.	2.4	122

#	Article	IF	CITATIONS
55	Total Synthesis of (+)-Roxaticin via Câ^'C Bond Forming Transfer Hydrogenation: A Departure from Stoichiometric Chiral Reagents, Auxiliaries, and Premetalated Nucleophiles in Polyketide Construction. Journal of the American Chemical Society, 2010, 132, 15559-15561.	6.6	122
56	Alkynes as Electrophilic or Nucleophilic Allylmetal Precursors in Transitionâ€Metal Catalysis. Angewandte Chemie - International Edition, 2017, 56, 11312-11325.	7.2	122
57	Catalytic CarbonylZ-Dienylation via Multicomponent Reductive Coupling of Acetylene to Aldehydes and α-Ketoesters Mediated by Hydrogen: Carbonyl Insertion into Cationic Rhodacyclopentadienes. Journal of the American Chemical Society, 2006, 128, 16040-16041.	6.6	120
58	Unlocking Hydrogenation for C–C Bond Formation: A Brief Overview of Enantioselective Methods. Organic Process Research and Development, 2011, 15, 1236-1242.	1.3	120
59	Diastereoselective Cobalt-Catalyzed Aldol and Michael Cycloreductions. Journal of the American Chemical Society, 2001, 123, 5112-5113.	6.6	118
60	Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Chemical Communications, 2009, , 7278.	2.2	118
61	Highly Enantioselective Reductive Cyclization of Acetylenic Aldehydes via Rhodium Catalyzed Asymmetric Hydrogenation. Journal of the American Chemical Society, 2006, 128, 10674-10675.	6.6	114
62	Diastereo- and Enantioselective Hydrogenative Aldol Coupling of Vinyl Ketones:  Design of Effective Monodentate TADDOL-Like Phosphonite Ligands. Journal of the American Chemical Society, 2008, 130, 2746-2747.	6.6	114
63	Diene hydroaminomethylation via ruthenium-catalyzed C–C bond forming transfer hydrogenation: beyond carbonylation. Chemical Science, 2016, 7, 136-141.	3.7	113
64	Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation. Pure and Applied Chemistry, 2012, 84, 1729-1739.	0.9	112
65	Hydroaminomethylation Beyond Carbonylation: Allene–Imine Reductive Coupling by Rutheniumâ€Catalyzed Transfer Hydrogenation. Angewandte Chemie - International Edition, 2015, 54, 8525-8528.	7.2	112
66	Redox-Triggered C–C Coupling of Alcohols and Vinyl Epoxides: Diastereo- and Enantioselective Formation of All-Carbon Quaternary Centers <i>via tert</i> -(Hydroxy)-Prenylation. Journal of the American Chemical Society, 2014, 136, 8911-8914.	6.6	109
67	All-Carbon Quaternary Centers via Ruthenium-Catalyzed Hydroxymethylation of 2-Substituted Butadienes Mediated by Formaldehyde: Beyond Hydroformylation. Journal of the American Chemical Society, 2009, 131, 10366-10367.	6.6	108
68	Direct Generation of Acyclic Polypropionate Stereopolyads <i>via</i> Double Diastereo- and Enantioselective Iridium-Catalyzed Crotylation of 1,3-Diols: Beyond Stepwise Carbonyl Addition in Polyketide Construction. Journal of the American Chemical Society, 2011, 133, 12795-12800.	6.6	108
69	Palladium-Catalyzed Enyne Cycloisomerization Reaction in an Asymmetric Approach to the Picrotoxane Sesquiterpenes. 2. Second-Generation Total Syntheses of Corianin, Picrotoxinin, Picrotin, and Methyl Picrotoxate. Journal of the American Chemical Society, 1999, 121, 6131-6141.	6.6	105
70	Enantioselective Reductive Cyclization of 1,6-Enynes via Rhodium-Catalyzed Asymmetric Hydrogenation:Â Câ^'C Bond Formation Precedes Hydrogen Activation. Journal of the American Chemical Society, 2005, 127, 6174-6175.	6.6	105
71	Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level Employing 1,3â€Enynes as Surrogates to Preformed Allenylmetal Reagents: A Ruthenium atalyzed CC Bondâ€Forming Transfer Hydrogenation. Angewandte Chemie - International Edition, 2008, 47, 5220-5223.	7.2	105
72	<i>anti</i> -Diastereo- and Enantioselective Carbonyl (Hydroxymethyl)allylation from the Alcohol or Aldehyde Oxidation Level: Allyl Carbonates as Allylmetal Surrogates. Journal of the American Chemical Society, 2010, 132, 4562-4563.	6.6	103

#	Article	IF	CITATIONS
73	Feedstock Reagents in Metalâ€Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Targetâ€Oriented Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14055-14064.	7.2	102
74	Enantioselective Formation of CF ₃ -Bearing All-Carbon Quaternary Stereocenters via C–H Functionalization of Methanol: Iridium Catalyzed Allene Hydrohydroxymethylation. Journal of the American Chemical Society, 2017, 139, 8114-8117.	6.6	101
75	Catalytic Crossed Michael Cycloisomerization of Thioenoates:  Total Synthesis of (±)-Ricciocarpin A. Organic Letters, 2003, 5, 1737-1740.	2.4	98
76	Ruthenium Catalyzed Câ^'C Bond Formation via Transfer Hydrogenation: Branch-Selective Reductive Coupling of Allenes to Paraformaldehyde and Higher Aldehydes. Organic Letters, 2008, 10, 2705-2708.	2.4	98
77	Branch-Selective Intermolecular Hydroacylation: Hydrogen-Mediated Coupling of Anhydrides to Styrenes and Activated Olefins. Angewandte Chemie - International Edition, 2006, 45, 6885-6888.	7.2	97
78	Rhodium-Catalyzed Reductive Cyclization of 1,6-Diynes and 1,6-Enynes Mediated by Hydrogen:  Catalytic Câ"C Bond Formation via Capture of Hydrogenation Intermediates. Journal of the American Chemical Society, 2004, 126, 7875-7880.	6.6	96
79	Chemo-, Regio-, and Enantioselective Pd-Catalyzed Allylic Alkylation of Indolocarbazole Pro-aglycons. Organic Letters, 2002, 4, 2005-2008.	2.4	95
80	Carbonyl Allylation in the Absence of Preformed Allyl Metal Reagents:  Reverse Prenylation via Iridium-Catalyzed Hydrogenative Coupling of Dimethylallene. Journal of the American Chemical Society, 2007, 129, 12678-12679.	6.6	95
81	Diastereo―and Enantioselective Iridiumâ€Catalyzed Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level: 1,3â€Enynes as Allenylmetal Equivalents. Angewandte Chemie - International Edition, 2012, 51, 2972-2976.	7.2	95
82	Direct, Redox-Neutral Prenylation and Geranylation of Secondary Carbinol C–H Bonds: C4-Regioselectivity in Ruthenium-Catalyzed C–C Couplings of Dienes to α-Hydroxy Esters. Journal of the American Chemical Society, 2012, 134, 15700-15703.	6.6	92
83	Regiodivergent reductive coupling of 2-substituted dienes to formaldehyde employing ruthenium or nickel catalyst: hydrohydroxymethylation via transfer hydrogenation. Chemical Science, 2013, 4, 1876.	3.7	92
84	Duplex Oligomers Defined via Covalent Casting of a One-Dimensional Hydrogen-Bonding Motif. Journal of the American Chemical Society, 2002, 124, 5074-5083.	6.6	91
85	Phosphine Catalyzed α-Arylation of Enones and Enals Using Hypervalent Bismuth Reagents: Regiospecific Enolate Arylation via Nucleophilic Catalysis. Journal of the American Chemical Society, 2004, 126, 5350-5351.	6.6	91
86	First Catalytic Reductive Coupling of 1,3-Diynes to Carbonyl Partners:Â A New Regio- and Enantioselective Câ^'C Bond Forming Hydrogenation. Journal of the American Chemical Society, 2003, 125, 11488-11489.	6.6	90
87	Enhanced anti-Diastereo- and Enantioselectivity in Alcohol-Mediated Carbonyl Crotylation Using an Isolable Single Component Iridium Catalyst. Journal of Organic Chemistry, 2011, 76, 2350-2354.	1.7	90
88	Polarity Inversion of Donor–Acceptor Cyclopropanes: Disubstituted Β-Lactones via Enantioselective Iridium Catalysis. Journal of the American Chemical Society, 2011, 133, 18618-18621.	6.6	90
89	Catalytic Reductive Coupling of Alkenes and Alkynes to Carbonyl Compounds and Imines Mediated by Hydrogen. , 2007, , 77-104.		89
90	<i>anti</i> -Aminoallylation of Aldehydes via Ruthenium-Catalyzed Transfer Hydrogenative Coupling of Sulfonamido Allenes: 1,2-Aminoalcohols. Journal of the American Chemical Society, 2009, 131, 5054-5055.	6.6	89

#	Article	IF	CITATIONS
91	Hydroacylation of 2-butyne from the alcohol or aldehyde oxidation level via ruthenium catalyzed C–C bond forming transfer hydrogenation. Tetrahedron, 2009, 65, 5024-5029.	1.0	88
92	Ruthenium Catalyzed Hydrohydroxyalkylation of Isoprene with Heteroaromatic Secondary Alcohols: Isolation and Reversible Formation of the Putative Metallacycle Intermediate. Journal of the American Chemical Society, 2013, 135, 16320-16323.	6.6	87
93	Ruthenium-BINAP Catalyzed Alcohol C–H <i>tert</i> -Prenylation via 1,3-Enyne Transfer Hydrogenation: Beyond Stoichiometric Carbanions in Enantioselective Carbonyl Propargylation. Journal of the American Chemical Society, 2016, 138, 5238-5241.	6.6	86
94	Allylic Amines via Iridium-Catalyzed Câ^'C Bond Forming Hydrogenation:Â Imine Vinylation in the Absence of Stoichiometric Byproducts or Metallic Reagents. Journal of the American Chemical Society, 2007, 129, 8432-8433.	6.6	84
95	Elongation of 1,3-Polyols via Iterative Catalyst-Directed Carbonyl Allylation from the Alcohol Oxidation Level. Organic Letters, 2009, 11, 3112-3115.	2.4	84
96	A Diastereoselective Metal-Catalyzed [2 + 2] Cycloaddition of Bis-enones. Journal of the American Chemical Society, 2001, 123, 6716-6717.	6.6	83
97	Hydrogen-Mediated Câ^'C Bond Formation: Catalytic Regio- and Stereoselective Reductive Condensation of α-Keto Aldehydes and 1,3-Enynes. Journal of the American Chemical Society, 2004, 126, 4664-4668.	6.6	83
98	Iridium-Catalyzed Câ^'C Bond Forming Hydrogenation:Â Direct Regioselective Reductive Coupling of Alkyl-Substituted Alkynes to Activated Ketones. Journal of the American Chemical Society, 2007, 129, 280-281.	6.6	83
99	Diastereo- and Enantioselective <i>anti</i> -Alkoxyallylation Employing Allylic <i>gem</i> -Dicarboxylates as Allyl Donors via Iridium-Catalyzed Transfer Hydrogenation. Journal of the American Chemical Society, 2010, 132, 1760-1761.	6.6	83
100	Amplification of Anti-Diastereoselectivity via Curtinâ^'Hammett Effects in Ruthenium-Catalyzed Hydrohydroxyalkylation of 1,1-Disubstituted Allenes: Diastereoselective Formation of All-Carbon Quaternary Centers. Journal of the American Chemical Society, 2011, 133, 1141-1144.	6.6	83
101	Asymmetric Induction in Hydrogen-Mediated Reductive Aldol Additions to α-Amino Aldehydes Catalyzed by Rhodium:Â Selective Formation ofsyn-Stereotriads Directed by Intramolecular Hydrogen-Bonding. Journal of the American Chemical Society, 2006, 128, 17051-17056.	6.6	82
102	ESI-MS, DFT, and Synthetic Studies on the H ₂ -Mediated Coupling of Acetylene: Insertion of Câ•X Bonds into Rhodacyclopentadienes and BrÃ,nsted Acid Cocatalyzed Hydrogenolysis of Organorhodium Intermediates. Journal of the American Chemical Society, 2009, 131, 16054-16062.	6.6	82
103	Successive C–C Coupling of Dienes to Vicinally Dioxygenated Hydrocarbons: Ruthenium Catalyzed [4 + 2] Cycloaddition across the Diol, Hydroxycarbonyl, or Dione Oxidation Levels. Journal of the American Chemical Society, 2013, 135, 3796-3799.	6.6	81
104	Formation of C–C Bonds via Ruthenium-catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level. Chemistry Letters, 2008, 37, 1102-1107.	0.7	80
105	Enolate Generation under Hydrogenation Conditions:  Catalytic Aldol Cycloreduction of Keto-Enones. Organic Letters, 2003, 5, 1143-1146.	2.4	79
106	Enantioselective Ruthenium-Catalyzed Carbonyl Allylation via Alkyne–Alcohol C–C Bond-Forming Transfer Hydrogenation: Allene Hydrometalation vs Oxidative Coupling. Journal of the American Chemical Society, 2015, 137, 3161-3164.	6.6	78
107	From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catalysis, 2021, 11, 5572-5585.	5.5	78
108	Chemically Induced Anion Radical Cycloadditions:Â Intramolecular Cyclobutanation of Bis(enones) via Homogeneous Electron Transfer. Journal of the American Chemical Society, 2004, 126, 1634-1635.	6.6	76

#	Article	IF	CITATIONS
109	Protectingâ€Groupâ€Free Diastereoselective Ci£¿C Coupling of 1,3â€Glycols and Allyl Acetate through Siteâ€Gelective Primary Alcohol Dehydrogenation. Angewandte Chemie - International Edition, 2013, 52, 3195-3198.	7.2	76
110	Allenamide Hydroâ^'Hydroxyalkylation: 1,2-Amino Alcohols via Ruthenium-Catalyzed Carbonyl <i>anti</i> -Aminoallylation. Organic Letters, 2010, 12, 2514-2516.	2.4	74
111	Ruthenium-Catalyzed Asymmetric Hydrohydroxyalkylation of Butadiene: The Role of the Formyl Hydrogen Bond in Stereochemical Control. Journal of the American Chemical Society, 2015, 137, 8838-8850.	6.6	73
112	Ruthenium-Catalyzed Hydrohydroxyalkylation of Acrylates with Diols and α-Hydroxycarbonyl Compounds To Form Spiro- and α-Methylene-γ-butyrolactones. Journal of the American Chemical Society, 2013, 135, 17230-17235.	6.6	72
113	Anion Radical Chain Cycloaddition of Tethered Enones:  Intramolecular Cyclobutanation and Dielsâ^'Alder Cycloaddition. Organic Letters, 2002, 4, 611-613.	2.4	71
114	Enantioselective Reductive Coupling of 1,3-Enynes to Glyoxalates Mediated by Hydrogen:  Asymmetric Synthesis of β,γ-Unsaturated α-Hydroxy Esters. Organic Letters, 2007, 9, 3745-3748.	2.4	71
115	Catalyst-Directed Diastereoselectivity in Hydrogenative Couplings of Acetylene to α-Chiral Aldehydes: Formal Synthesis of All Eight <scp>l</scp> -Hexoses. Organic Letters, 2008, 10, 4133-4135.	2.4	71
116	Iridium-Catalyzed <i>anti</i> -Diastereo- and Enantioselective Carbonyl (Trimethylsilyl)allylation from the Alcohol or Aldehyde Oxidation Level. Journal of the American Chemical Society, 2010, 132, 9153-9156.	6.6	71
117	Catalytic Addition of Metallo-Aldehyde Enolates to Ketones:  A New Câ^'C Bond-Forming Hydrogenation. Organic Letters, 2004, 6, 691-694.	2.4	70
118	Iridium-Catalyzed Hydrocarboxylation of 1,1-Dimethylallene:  Byproduct-Free Reverse Prenylation of Carboxylic Acids. Organic Letters, 2008, 10, 513-515.	2.4	70
119	Divergent Regioselectivity in the Synthesis of Trisubstituted Allylic Alcohols by Nickel―and Rutheniumâ€Catalyzed Alkyne Hydrohydroxymethylation with Formaldehyde. Angewandte Chemie - International Edition, 2011, 50, 5687-5690.	7.2	70
120	Duplex Molecular Strands Based on the 3,6-Diaminopyridazine Hydrogen Bonding Motif:Â Amplifying Small-Molecule Self-Assembly Preferences through Preorganization and Iterative Arrangement of Binding Residues. Journal of the American Chemical Society, 2005, 127, 1719-1725.	6.6	68
121	Enantioselective Conversion of Primary Alcohols to α- <i>exo</i> -Methylene γ-Butyrolactones via Iridium-Catalyzed C–C Bond-Forming Transfer Hydrogenation: 2-(Alkoxycarbonyl)allylation. Journal of the American Chemical Society, 2012, 134, 11100-11103.	6.6	68
122	Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (<i>Z</i>)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition. Journal of the American Chemical Society, 2014, 136, 11902-11905.	6.6	68
123	Ruthenium-Catalyzed C–C Coupling of Amino Alcohols with Dienes via Transfer Hydrogenation: Redox-Triggered Imine Addition and Related Hydroaminoalkylations. Journal of the American Chemical Society, 2015, 137, 1798-1801.	6.6	66
124	Formation of C-C Bonds via Catalytic Hydrogenation and Transfer Hydrogenation: Vinylation, Allylation, and Enolate Addition of Carbonyl Compounds and Imines. Aldrichimica Acta, 2008, 41, 95-104.	4.0	66
125	Ruthenium Catalyzed Reductive Coupling of Paraformaldehyde to Trifluoromethyl Allenes: CF ₃ -Bearing All-Carbon Quaternary Centers. Organic Letters, 2013, 15, 3790-3793. 	2.4	61
126	Total Synthesis of 6-Deoxyerythronolide B via C–C Bond-Forming Transfer Hydrogenation. Journal of the American Chemical Society, 2013, 135, 4223-4226.	6.6	61

#	Article	IF	CITATIONS
127	α-Hydroxy Esters via Enantioselective Hydrogen-Mediated Câ^'C Coupling:  Regiocontrolled Reactions of Silyl-Substituted 1,3-Diynes. Organic Letters, 2006, 8, 3873-3876.	2.4	60
128	Catalystâ€Directed Diastereo―and Siteâ€Selectivity in Successive Nucleophilic and Electrophilic Allylations of Chiral 1,3â€Diols: Protectingâ€Groupâ€Free Synthesis of Substituted Pyrans. Chemistry - A European Journal, 2014, 20, 13382-13389.	1.7	60
129	Catalytic Reductive Aldol and Mannich Reactions of Enone, Acrylate, and Vinyl Heteroaromatic Pronucleophiles. Chemical Reviews, 2020, 120, 3721-3748.	23.0	60
130	The Covalent Casting of One-Dimensional Hydrogen Bonding Motifs: Toward Oligomers and Polymers of Predefined Topography. Chemistry - A European Journal, 2001, 7, 2059-2066.	1.7	56
131	A New Catalytic CC Bond-Forming Hydrogenation: Reductive Coupling of Dienes and Glyoxals under Catalytic Hydrogenation Conditions. Angewandte Chemie - International Edition, 2003, 42, 4074-4077.	7.2	56
132	Protecting-Group-Free Synthesis of 3- <i>tert</i> -Prenylated Oxindoles: Contiguous All-Carbon Quaternary Centers via Tertiary Neopentyl Substitution. Organic Letters, 2009, 11, 4485-4487.	2.4	56
133	Hydrogen-Mediated Aldol Reductive Coupling of Vinyl Ketones Catalyzed by Rhodium: HighSyn-Selectivity through the Effect of Tri-2-furylphosphine. Organic Letters, 2006, 8, 519-522.	2.4	54
134	Branch-Selective Reductive Coupling of 2-Vinyl Pyridines and Imines <i>via</i> Rhodium Catalyzed Câ^'C Bond Forming Hydrogenation. Journal of the American Chemical Society, 2008, 130, 12592-12593.	6.6	54
135	Regioselective Ruthenium Catalyzed Hydrohydroxyalkylation of Dienes with 3-Hydroxy-2-oxindoles: Prenylation, Geranylation, and Beyond. Organic Letters, 2013, 15, 2994-2997.	2.4	54
136	Regio―and Diastereoselective CC Coupling of αâ€Olefins and Styrenes to 3â€Hydroxyâ€2â€oxindoles by Ruâ€Catalyzed Hydrohydroxyalkylation. Angewandte Chemie - International Edition, 2013, 52, 8428-8431.	7.2	54
137	Total Synthesis of Cyanolideâ€A in the Absence of Protecting Groups, Chiral Auxiliaries, or Premetalated Carbon Nucleophiles. Angewandte Chemie - International Edition, 2013, 52, 4470-4473.	7.2	53
138	Metallo-Aldehyde Enolates via Enal Hydrogenation:Â Catalytic Cross Aldolization with Glyoxal Partners As Applied to the Synthesis of 3,5-Disubstituted Pyridazines. Journal of Organic Chemistry, 2004, 69, 1380-1382.	1.7	51
139	Concise Synthesis of the Bryostatin A-Ring via Consecutive Câ [~] 'C Bond Forming Transfer Hydrogenations. Organic Letters, 2009, 11, 3108-3111.	2.4	51
140	Benzannulation via Ruthenium-Catalyzed Diol–Diene [4+2] Cycloaddition: One- and Two-Directional Syntheses of Fluoranthenes and Acenes. Journal of the American Chemical Society, 2014, 136, 5920-5922.	6.6	51
141	Ruthenium atalyzed CC Coupling of Fluorinated Alcohols with Allenes: Dehydrogenation at the Energetic Limit of βâ€Hydride Elimination. Angewandte Chemie - International Edition, 2015, 54, 5465-5469.	7.2	51
142	Iridium atalyzed Hydrohydroxyalkylation of Butadiene: Carbonyl Crotylation. Advanced Synthesis and Catalysis, 2010, 352, 2416-2420.	2.1	50
143	Rhodium-Catalyzed Aldehyde Arylation via Formate-Mediated Transfer Hydrogenation: Beyond Metallic Reductants in Grignard/Nozaki–Hiyami–Kishi-Type Addition. Journal of the American Chemical Society, 2019, 141, 1828-1832.	6.6	50
144	The Palladium-Catalyzed Enyne Cycloisomerization Reaction in a General Approach to the Asymmetric Syntheses of the Picrotoxane Sesquiterpenes. Part I. First-Generation Total Synthesis of Corianin and Formal Syntheses of Picrotoxinin and Picrotin. Journal of the American Chemical Society, 1999, 121, 6183-6192.	6.6	49

#	Article	IF	CITATIONS
145	Direct Ruthenium-Catalyzed Câ^'C Coupling of Ethanol: Diene Hydro-hydroxyethylation To Form All-Carbon Quaternary Centers. Organic Letters, 2010, 12, 2844-2846.	2.4	49
146	Regio―and Enantioselective Iridium atalyzed Nâ€Allylation of Indoles and Related Azoles with Racemic Branched Alkylâ€Substituted Allylic Acetates. Angewandte Chemie - International Edition, 2019, 58, 7762-7766.	7.2	49
147	Ruthenium catalyzed hydroaminoalkylation of isoprene via transfer hydrogenation: byproduct-free prenylation of hydantoins. Chemical Communications, 2013, 49, 6096.	2.2	48
148	Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination. Journal of the American Chemical Society, 2016, 138, 3655-3658.	6.6	48
149	Redoxâ€Triggered CC Coupling of Diols and Alkynes: Synthesis of β,γâ€Unsaturated αâ€Hydroxyketones and Furans by Rutheniumâ€Catalyzed Hydrohydroxyalkylation. Angewandte Chemie - International Edition, 2014, 53, 3232-3235.	7.2	47
150	Total Synthesis of Swinholide A: An Exposition in Hydrogen-Mediated C–C Bond Formation. Journal of the American Chemical Society, 2016, 138, 14246-14249.	6.6	47
151	General Strategy for the Asymmetric Synthesis of the Picrotoxanes. Journal of the American Chemical Society, 1996, 118, 233-234.	6.6	46
152	Iridiumâ€Catalyzed <i>anti</i> â€Diastereo―and Enantioselective Carbonyl (αâ€Trifluoromethyl)allylation from the Alcohol or Aldehyde Oxidation Level. Angewandte Chemie - International Edition, 2011, 50, 4173-4175.	7.2	46
153	Direct Generation of Triketide Stereopolyads via Merged Redox-Construction Events: Total Synthesis of (+)-Zincophorin Methyl Ester. Journal of the American Chemical Society, 2015, 137, 8900-8903.	6.6	46
154	Regio- and Enantioselective Iridium-Catalyzed Amination of Racemic Branched Alkyl-Substituted Allylic Acetates with Primary and Secondary Aromatic and Heteroaromatic Amines. Journal of the American Chemical Society, 2019, 141, 671-676.	6.6	46
155	Nanostructured Polymer Duplexes via the Covalent Casting of 1-Dimensional H-Bonding Motifs:Â A New Strategy for the Self-Assembly of Macromolecular Precursors. Journal of the American Chemical Society, 2000, 122, 5006-5007.	6.6	45
156	Iridium-Catalyzed Allylation of Chiral β-Stereogenic Alcohols: Bypassing Discrete Formation of Epimerizable Aldehydes. Organic Letters, 2012, 14, 6302-6305.	2.4	45
157	Iridium-Catalyzed C–C Coupling of a Simple Propargyl Ether with Primary Alcohols: Enantioselective Homoaldol Addition via Redox-Triggered (<i>Z</i>)-Siloxyallylation. Journal of the American Chemical Society, 2015, 137, 16024-16027.	6.6	45
158	Amphiphilic π-Allyliridium <i>C</i> , <i>O</i> -Benzoates Enable Regio- and Enantioselective Amination of Branched Allylic Acetates Bearing Linear Alkyl Groups. Journal of the American Chemical Society, 2018, 140, 1275-1279.	6.6	45
159	Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to I€-Allyls. Journal of the American Chemical Society, 2015, 137, 13066-13071.	6.6	44
160	Ruthenium-catalyzed insertion of adjacent diol carbon atoms into C-C bonds: Entry to type II polyketides. Science, 2017, 357, 779-781.	6.0	44
161	Enantioselective total and formal syntheses of paroxetine (PAXIL) via phosphine-catalyzed enone α-arylation using arylbismuth(V) reagents: a regiochemical complement to Heck arylation. Tetrahedron, 2006, 62, 10594-10602.	1.0	42
162	Enantioselective Carbonyl Propargylation by Iridium atalyzed Transfer Hydrogenative Coupling of Alcohols and Propargyl Chlorides. Angewandte Chemie - International Edition, 2012, 51, 7830-7834.	7.2	42

#	Article	IF	CITATIONS
163	Direct Conversion of Primary Alcohols to 1,2-Amino Alcohols: Enantioselective Iridium-Catalyzed Carbonyl Reductive Coupling of Phthalimido-Allene via Hydrogen Auto-Transfer. Journal of the American Chemical Society, 2019, 141, 14136-14141.	6.6	42
164	Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chemical Reviews, 2021, 121, 4045-4083.	23.0	42
165	Anion Radical [2 + 2] Cycloaddition as a Mechanistic Probe:Â Stoichiometry- and Concentration-Dependent Partitioning of Electron-Transfer and Alkylation Pathways in the Reaction of the Gilman Reagent Me2CuLi·Lil with Bis(enones). Journal of Organic Chemistry, 2004, 69, 7979-7984.	1.7	41
166	Ruthenium(0)â€Catalyzed [4+2] Cycloaddition of Acetylenic Aldehydes with αâ€Ketols: Convergent Construction of Angucycline Ring Systems. Angewandte Chemie - International Edition, 2016, 55, 1493-1497.	7.2	41
167	Cyclometalated Iridium–PhanePhos Complexes Are Active Catalysts in Enantioselective Allene–Fluoral Reductive Coupling and Related Alcohol-Mediated Carbonyl Additions That Form Acyclic Quaternary Carbon Stereocenters. Journal of the American Chemical Society, 2019, 141, 2087-2096.	6.6	41
168	Conversion of Aldehydes to Branched or Linear Ketones via Regiodivergent Rhodium-Catalyzed Vinyl Bromide Reductive Coupling–Redox Isomerization Mediated by Formate. Journal of the American Chemical Society, 2019, 141, 6864-6868.	6.6	41
169	Enantioselective Iridiumâ€Catalyzed Vinylogous Reformatskyâ€Aldol Reaction from the Alcohol Oxidation Level: Linear Regioselectivity by Way of Carbonâ€Bound Enolates. Angewandte Chemie - International Edition, 2011, 50, 3493-3496.	7.2	40
170	Diastereo- and Enantioselective Iridium Catalyzed Coupling of Vinyl Aziridines with Alcohols: Site-Selective Modification of Unprotected Diols and Synthesis of Substituted Piperidines. Journal of the American Chemical Society, 2015, 137, 7915-7920.	6.6	40
171	Borane-Mediated Aldol Cycloreduction of Monoenone Monoketones:Â Diastereoselective Formation of Quaternary Centers. Journal of Organic Chemistry, 2003, 68, 11-14.	1.7	39
172	Rutheniumâ€Catalyzed Reductive Coupling of 1,3â€Enynes and Aldehydes by Transfer Hydrogenation: <i>anti</i> â€Diastereoselective Carbonyl Propargylation. Chemistry - A European Journal, 2012, 18, 16823-16827.	1.7	39
173	Inversion of Enantioselectivity in Allene Gas versus Allyl Acetate Reductive Aldehyde Allylation Guided by Metal-Centered Stereogenicity: An Experimental and Computational Study. ACS Catalysis, 2019, 9, 9158-9163.	5.5	39
174	Enantioselective Reductive Coupling of Alkynes and α-Keto Aldehydes via Rhodium-Catalyzed Hydrogenation:  An Approach to Bryostatin Substructures. Organic Letters, 2006, 8, 891-894.	2.4	38
175	Enantioselective Ruthenium-Catalyzed Benzocyclobutenone–Ketol Cycloaddition: Merging C–C Bond Activation and Transfer Hydrogenative Coupling for Type II Polyketide Construction. Journal of the American Chemical Society, 2018, 140, 9091-9094.	6.6	38
176	Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and Stateâ€ofâ€Theâ€Art Survey. Chemistry - A European Journal, 2021, 27, 13107-13116.	1.7	38
177	Reductive Aldol Coupling of Divinyl Ketones via Rhodium-Catalyzed Hydrogenation: syn-Diastereoselective Construction of β-Hydroxyenones. Organic Letters, 2006, 8, 5657-5660.	2.4	37
178	Total Synthesis of (+)-Trienomycins A and F via C–C Bond-Forming Hydrogenation and Transfer Hydrogenation. Journal of the American Chemical Society, 2013, 135, 10986-10989.	6.6	37
179	Alkine als alternativer Einstieg in elektrophile und nukleophile Übergangsmetallâ€katalysierte Allylierungen. Angewandte Chemie, 2017, 129, 11466-11480.	1.6	37
180	Enantioselective Carbonyl Allylation, Crotylation, and tert-Prenylation of Furan Methanols and Furfurals via Iridium-Catalyzed Transfer Hydrogenation. Journal of Organic Chemistry, 2010, 75, 1795-1798.	1.7	36

#	Article	IF	CITATIONS
181	Alkyne–Aldehyde Reductive Cï£;C Coupling through Rutheniumâ€Catalyzed Transfer Hydrogenation: Direct Regio―and Stereoselective Carbonyl Vinylation to Form Trisubstituted Allylic Alcohols in the Absence of Premetallated Reagents. Chemistry - A European Journal, 2011, 17, 12437-12443.	1.7	36
182	Rhodium-Catalyzed Reductive Mannich Coupling of Vinyl Ketones toN-Sulfonylimines Mediated by Hydrogen. Journal of Organic Chemistry, 2007, 72, 5843-5846.	1.7	35
183	Catalytic enantioselective Grignard Nozaki–Hiyama methallylation from the alcohol oxidation level: chloride compensates for π-complex instability. Chemical Communications, 2011, 47, 10028.	2.2	35
184	Modular Terpenoid Construction via Catalytic Enantioselective Formation of All-Carbon Quaternary Centers: Total Synthesis of Oridamycin A, Triptoquinones B and C, and Isoiresin. Journal of the American Chemical Society, 2016, 138, 12364-12367.	6.6	35
185	Synthesis of <i>seco</i> -B-Ring Bryostatin Analogue WN-1 via C–C Bond-Forming Hydrogenation: Critical Contribution of the B-Ring in Determining Bryostatin-like and Phorbol 12-Myristate 13-Acetate-like Properties. Journal of the American Chemical Society, 2014, 136, 13209-13216.	6.6	33
186	Evaluation of Chromane-Based Bryostatin Analogues Prepared via Hydrogen-Mediated C–C Bond Formation: Potency Does Not Confer Bryostatin-like Biology. Journal of the American Chemical Society, 2016, 138, 13415-13423.	6.6	32
187	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	5.3	32
188	Ring expansion of cyclic 1,2-diols to form medium sized rings via ruthenium catalyzed transfer hydrogenative [4+2] cycloaddition. Chemical Communications, 2014, 50, 7545.	2.2	31
189	Diols, α-Ketols, and Diones as 2 _{2π} Components in [2+2+2] Cycloadditions of 1,6-Diynes via Ruthenium(0)-Catalyzed Transfer Hydrogenation. Journal of the American Chemical Society, 2016, 138, 16244-16247.	6.6	31
190	Ruthenium-Catalyzed Transfer Hydrogenation for C–C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs. Topics in Current Chemistry, 2016, 374, 35.	3.0	31
191	Ruthenium(0) Catalyzed Endiyneâ^`α-Ketol [4 + 2] Cycloaddition: Convergent Assembly of Type II Polyketide Substructures via C–C Bond Forming Transfer Hydrogenation. Journal of the American Chemical Society, 2015, 137, 5883-5886.	6.6	30
192	Helical Rod-like Phenylene Cages via Ruthenium Catalyzed Diol-Diene Benzannulation: A Cord of Three Strands. Journal of the American Chemical Society, 2018, 140, 2455-2459.	6.6	30
193	Molecular-Recognition-Directed Self-Assembly of Pleated Sheets from 2-Aminopyrimidine Hydrogen-Bonding Motifs. Helvetica Chimica Acta, 1998, 81, 1909-1920.	1.0	28
194	Asymmetric Iridium-Catalyzed C–C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition. Topics in Current Chemistry, 2015, 372, 85-101.	4.0	28
195	Consecutive iridium catalyzed C–C and C–H bond forming hydrogenations for the diastereo- and enantioselective synthesis of syn-3-fluoro-1-alcohols: C–H (2-fluoro)allylation of primary alcohols. Chemical Communications, 2012, 48, 4692.	2.2	27
196	Enantioselective Iridium atalyzed Phthalide Formation through Internal Redox Allylation of Phthalaldehydes. Angewandte Chemie - International Edition, 2018, 57, 1390-1393.	7.2	27
197	Enantiomeric Separations of Chiral Sulfonic and Phosphoric Acids with Barium-Doped Cyclofructan Selectors via an Ion Interaction Mechanism. Analytical Chemistry, 2014, 86, 1282-1290.	3.2	26
198	Osmium(0)-Catalyzed C–C Coupling of Ethylene and α-Olefins with Diols, Ketols, or Hydroxy Esters via Transfer Hydrogenation. Journal of Organic Chemistry, 2016, 81, 8585-8594.	1.7	26

#	Article	IF	CITATIONS
199	Enantioselective Synthesis of Oxetanes Bearing Allâ€Carbon Quaternary Stereocenters via Iridiumâ€Catalyzed Câ^'C Bondâ€Forming Transfer Hydrogenation. Chemistry - A European Journal, 2017, 23, 2557-2559.	1.7	26
200	Ruthenium(0) atalyzed Cycloaddition of 1,2â€Diols, Ketols, or Diones via Alcoholâ€Mediated Hydrogen Transfer. Angewandte Chemie - International Edition, 2018, 57, 3012-3021.	7.2	26
201	Enantioselective Ruthenium-BINAP-Catalyzed Carbonyl Reductive Coupling of Alkoxyallenes: Convergent Construction of <i>syn-sec,tert</i> -Diols via (<i>Z</i>)-Ï <i>f</i> -Allylmetal Intermediates. Journal of the American Chemical Society, 2021, 143, 8849-8854.	6.6	26
202	Enantioselective Metal-Catalyzed Reductive Coupling of Alkynes with Carbonyl Compounds and Imines: Convergent Construction of Allylic Alcohols and Amines. ACS Catalysis, 2022, 12, 8164-8174.	5.5	26
203	Chiral Amines via Enantioselective ï€-Allyliridium- <i>C</i> , <i>O</i> -Benzoate-Catalyzed Allylic Alkylation: Student Training via Industrial–Academic Collaboration. Accounts of Chemical Research, 2022, 55, 2138-2147.	7.6	26
204	Mechanism and Origins of Regio―and Enantioselectivities in Rh ^I â€Catalyzed Hydrogenative Couplings of 1,3â€Diynes and Activated Carbonyl Partners: Intervention of a Cumulene Intermediate. Chemistry - A European Journal, 2011, 17, 4021-4029.	1.7	25
205	Carbonyl <i>anti</i> -(α-Amino)allylation via Ruthenium Catalyzed Hydrogen Autotransfer: Use of an Acetylenic Pyrrole as an Allylmetal Pronucleophile. Organic Letters, 2017, 19, 4876-4879.	2.4	25
206	Catalytic Enantioselective Carbonyl Propargylation Beyond Preformed Carbanions: Reductive Coupling and Hydrogen Autoâ€Transfer. ChemCatChem, 2019, 11, 324-332.	1.8	25
207	Diastereo- and Enantioselective Ruthenium-Catalyzed C-C Coupling of 1-Arylpropynes and Alcohols: Alkynes as Chiral Allylmetal Precursors in Carbonyl <i>anti</i> -(α-Aryl)allylation. Journal of the American Chemical Society, 2021, 143, 2838-2845.	6.6	25
208	Understanding Halide Counterion Effects in Enantioselective Ruthenium-Catalyzed Carbonyl (α-Aryl)allylation: Alkynes as Latent Allenes and Trifluoroethanol-Enhanced Turnover in The Conversion of Ethanol to Higher Alcohols via Hydrogen Auto-transfer. Journal of the American Chemical Society, 2021, 143, 16709-16717.	6.6	25
209	Synthesis of the Cytotrienin A Core <i>via</i> Metal Catalyzed Câ^C Coupling. Organic Letters, 2011, 13, 1482-1485.	2.4	24
210	Feedstock Reagents in Metalâ€Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Targetâ€Oriented Synthesis. Angewandte Chemie, 2019, 131, 14193-14202.	1.6	24
211	Self-assembly of 1- and 2-Dimensional Multicompartmental Arrays via the 2-Aminopyrimidine H-Bonding Motif and Selective Guest Inclusion. Tetrahedron, 2000, 56, 6701-6706.	1.0	23
212	Reductive cyclization of halo-ketones to form 3-hydroxy-2-oxindoles via palladium catalyzed hydrogenation: a hydrogen-mediated Grignard addition. Tetrahedron, 2015, 71, 5776-5780.	1.0	23
213	C â€Propargylation Overrides O â€Propargylation in Reactions of Propargyl Chloride with Primary Alcohols: Rhodiumâ€Catalyzed Transfer Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 9207-9211.	7.2	23
214	Selection between Diastereomeric Kinetic vs Thermodynamic Carbonyl Binding Modes Enables Enantioselective Iridium-Catalyzed <i>anti</i> -(α-Aryl)allylation of Aqueous Fluoral Hydrate and Difluoroacetaldehyde Ethyl Hemiacetal. Journal of the American Chemical Society, 2018, 140, 9392-9395.	6.6	23
215	A Metallacycle Fragmentation Strategy for Vinyl Transfer from Enol Carboxylates to Secondary Alcohol C–H Bonds via Osmium- or Ruthenium-Catalyzed Transfer Hydrogenation. Journal of the American Chemical Society, 2015, 137, 7652-7655.	6.6	22
216	Nickel-Catalyzed Cross-Coupling of Vinyl Dioxanones to Form Enantiomerically Enriched Cyclopropanes. Journal of the American Chemical Society, 2017, 139, 6847-6850.	6.6	22

#	Article	IF	CITATIONS
217	Hydroamination versus Allylic Amination in Iridium-Catalyzed Reactions of Allylic Acetates with Amines: 1,3-Aminoalcohols via Ester-Directed Regioselectivity. Journal of the American Chemical Society, 2018, 140, 9087-9090.	6.6	22
218	Diastereo- and Enantioselective Reductive Aldol Addition of Vinyl Ketones via Catalytic Hydrogenation. Synthesis, 2008, 2008, 2669-2679.	1.2	20
219	Synthetic duplex oligomers: optimizing interstrand affinity through the use of a noncovalent constraint. Tetrahedron, 2002, 58, 721-725.	1.0	19
220	Regioselective Hydrohydroxyalkylation of Styrene with Primary Alcohols or Aldehydes via Ruthenium atalyzed Câ~C Bond Forming Transfer Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 16119-16122.	7.2	19
221	Ruthenium-Catalyzed Transfer Hydrogenation for C–C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs. Topics in Current Chemistry Collections, 2016, , 365-387.	0.2	19
222	Metal-Catalyzed Reductive Aldol Coupling. , 0, , 387-417.		18
223	Enantioselective Total Synthesis of Andrographolide and 14â€Hydroxyâ€Colladonin: Carbonyl Reductive Coupling and trans â€Decalin Formation by Hydrogen Transfer. Angewandte Chemie - International Edition, 2020, 59, 23169-23173.	7.2	18
224	Enantioselective Iridium-Catalyzed Allylation of Nitroalkanes: Entry to β-Stereogenic α-Quaternary Primary Amines. Journal of the American Chemical Society, 2021, 143, 9343-9349.	6.6	18
225	Diastereo―and Enantioselective Iridium Catalyzed Carbonyl (αâ€Cyclopropyl)allylation via Transfer Hydrogenation. Chemistry - A European Journal, 2015, 21, 12903-12907.	1.7	17
226	Enantioselective iridium-catalyzed carbonyl isoprenylation <i>via</i> alcohol-mediated hydrogen transfer. Chemical Communications, 2019, 55, 981-984.	2.2	17
227	Exploring the 2,2′-Diamino-5,5′-bipyrimidine Hydrogen-Bonding Motif: A Modular Approach to Alkoxy-Functionalized Hydrogen-Bonded Networks. Helvetica Chimica Acta, 1998, 81, 1921-1930.	1.0	16
228	Direct Copperâ€Free Domino Conjugate Additionâ€Cycloallylation using Organozinc Reagents. Advanced Synthesis and Catalysis, 2008, 350, 1569-1576.	2.1	16
229	Total Synthesis of Cryptocaryol A by Enantioselective Iridiumâ€Catalyzed Alcohol Câ^'H Allylation. Angewandte Chemie - International Edition, 2016, 55, 5049-5052.	7.2	16
230	Total Synthesis of (+)-SCH 351448: Efficiency via Chemoselectivity and Redox-Economy Powered by Metal Catalysis. Journal of the American Chemical Society, 2016, 138, 8088-8091.	6.6	16
231	Stereo- and Site-Selective Conversion of Primary Alcohols to Allylic Alcohols via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by 2-Butyne. Journal of the American Chemical Society, 2022, 144, 8861-8869.	6.6	16
232	Regioselective Hydrohydroxyalkylation of Styrene with Primary Alcohols or Aldehydes via Ruthenium atalyzed Câ^'C Bond Forming Transfer Hydrogenation. Angewandte Chemie, 2016, 128, 16353-16356.	1.6	15
233	Diols as Dienophiles: Bridged Carbocycles via Ruthenium(0)â€Catalyzed Transfer Hydrogenative Cycloadditions of Cyclohexadiene or Norbornadiene. Angewandte Chemie - International Edition, 2017, 56, 14667-14671.	7.2	15
234	Catalytic Enantioselective Allylations of Acetylenic Aldehydes via 2-Propanol-Mediated Reductive Coupling. Organic Letters, 2018, 20, 4144-4147.	2.4	15

#	Article	IF	CITATIONS
235	Total Synthesis of Leiodermatolide A via Transfer Hydrogenative Allylation, Crotylation, and Propargylation: Polyketide Construction beyond Discrete Allyl- or Allenylmetal Reagents. Journal of the American Chemical Society, 2021, 143, 10590-10595.	6.6	15
236	Hydrogen-Bond-Mediated Self-Assembly of Aminopyrazolones: Macrocyclic Quartets—Single and Stacked One-Dimensional Motifs. Angewandte Chemie - International Edition, 2005, 44, 7069-7071.	7.2	14
237	C(21)â^'C(40) of Tetrafibricin <i>via</i> Metal Catalysis: Beyond Stoichiometric Chiral Reagents, Auxiliaries, and Premetalated Nucleophiles. Organic Letters, 2011, 13, 2484-2487.	2.4	14
238	Ruthenium(0) atalyzed [4+2] Cycloaddition of Acetylenic Aldehydes with αâ€Ketols: Convergent Construction of Angucycline Ring Systems. Angewandte Chemie, 2016, 128, 1515-1519.	1.6	14
239	Ruthenium(0)-Catalyzed C–C Coupling of Alkynes and 3-Hydroxy-2-oxindoles: Direct C–H Vinylation of Alcohols. Organic Letters, 2017, 19, 966-968.	2.4	14
240	Alternating oligo(<i>o</i> , <i>p</i> -phenylenes) <i>via</i> ruthenium catalyzed diol–diene benzannulation: orthogonality to cross-coupling enables <i>de novo</i> nanographene and PAH construction. Chemical Science, 2018, 9, 7866-7873.	3.7	14
241	Ethanol: Unlocking an Abundant Renewable C 2 â€Feedstock for Catalytic Enantioselective Câ^'C Coupling. Angewandte Chemie - International Edition, 2021, 60, 10542-10546.	7.2	14
242	Hydrogenâ€Mediated Câ^'C Bond Formation: Stereo―and Siteâ€Selective Chemical Synthesis Beyond Stoichiometric Organometallic Reagents. Israel Journal of Chemistry, 2018, 58, 45-51.	1.0	13
243	Asymmetric Allylation of Glycidols Mediated by Allyl Acetate via Iridium-Catalyzed Hydrogen Transfer. Organic Letters, 2017, 19, 1252-1254.	2.4	12
244	Thermal <i>Hetero</i> -Diels–Alder Reaction of Benzocyclobutenones with Isatins To Form 2-Oxindole Spirolactones. Journal of Organic Chemistry, 2017, 82, 13751-13755.	1.7	12
245	Contrasteric Regiocontrol in Rhodium-Catalyzed Hydrogenative Couplings of Nonsymmetric 1,3-Diynes to Ethyl Glyoxalate. Organometallics, 2007, 26, 3860-3867.	1.1	11
246	Formal Synthesis of Premisakinolide A and C(19)–C(32) of Swinholide A via Site-Selective C–H Allylation and Crotylation of Unprotected Diols. Organic Letters, 2015, 17, 4686-4689.	2.4	11
247	Total Synthesis and Structural Validation of Phosdiecin A via Asymmetric Alcohol-Mediated Carbonyl Reductive Coupling. Journal of the American Chemical Society, 2019, 141, 13778-13782.	6.6	11
248	Total Synthesis of Clavosolideâ€A via Asymmetric Alcoholâ€Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angewandte Chemie - International Edition, 2019, 58, 10718-10722.	7.2	11
249	Regio―and Enantioselective Iridium atalyzed Nâ€Allylation of Indoles and Related Azoles with Racemic Branched Alkyl‧ubstituted Allylic Acetates. Angewandte Chemie, 2019, 131, 7844-7848.	1.6	11
250	Conversion of Primary Alcohols and Butadiene to Branched Ketones via Merged Transfer Hydrogenative Carbonyl Addition–Redox Isomerization Catalyzed by Rhodium. Journal of the American Chemical Society, 2021, 143, 13507-13512.	6.6	11
251	Chiral β-diketonate ligands of â€~pseudo planar chiral' topology: enantioselective synthesis and transition metal complexation. Tetrahedron, 2005, 61, 6266-6275.	1.0	10
252	Enantioselective Iridiumâ€Catalyzed Allylation of Acetylenic Ketones via 2â€Propanolâ€Mediated Reductive Coupling of Allyl Acetate: C14â€C23 of Pladienolideâ€D. Angewandte Chemie - International Edition, 2019, 58. 18803-18807.	7.2	10

#	Article	IF	CITATIONS
253	Enantioselective Synthesis of Chiral Organofluorine Compounds: Alcohol-Mediated Hydrogen Transfer for Catalytic Carbonyl Reductive Coupling. Organic Process Research and Development, 2019, 23, 730-736.	1.3	10
254	Total Synthesis of the Spliceosome Modulator Pladienolideâ€B via Asymmetric Alcoholâ€Mediated <i>syn</i> ―and <i>anti</i> â€Diastereoselective Carbonyl Crotylation. Angewandte Chemie - International Edition, 2021, 60, 13923-13928.	7.2	10
255	Enones as Latent Enolates in Catalytic Processes: Catalytic Cycloreduction, Cycloaddition and Cycloisomerization. Synlett, 2002, 2003, 0012-0021.	1.0	9
256	Vinyl Triflate–Aldehyde Reductive Coupling–Redox Isomerization Mediated by Formate: Rhodiumâ€Catalyzed Ketone Synthesis in the Absence of Stoichiometric Metals. Chemistry - A European Journal, 2019, 25, 12517-12520.	1.7	9
257	Synthesis and Photophysical Properties of Soluble Nâ€Doped Rubicenes via Rutheniumâ€Catalyzed Transfer Hydrogenative Benzannulation. Chemistry - A European Journal, 2021, 27, 4898-4902.	1.7	9
258	Total Synthesis of the Acetyl CoA Carboxylase Inhibitor Soraphen A: Asymmetric Tsuji Reduction Enables Successive Olefin Metathesis. Journal of the American Chemical Society, 2022, , .	6.6	9
259	Enantioselective Iridium atalyzed Reductive Coupling of Dienes with Oxetanones and Nâ€Acylâ€Azetidinones Mediated by 2â€Propanol. Angewandte Chemie - International Edition, 2022, , .	7.2	9
260	Cross-metathesis–based approaches to heteroaromatics: Combining catalysts for furan formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3279-3280.	3.3	8
261	Chemical Tuning of Exciton versus Charge-Transfer Excited States in Conformationally Restricted Arylene Cages. Journal of the American Chemical Society, 2021, 143, 18548-18558.	6.6	8
262	Synthesis of the C(1)–C(13) Fragment of Leiodermatolide via Hydrogen-Mediated C–C Bond Formation. Organic Letters, 2017, 19, 6634-6637.	2.4	7
263	Enantioselective Iridiumâ€Catalyzed Phthalide Formation through Internal Redox Allylation of Phthalaldehydes. Angewandte Chemie, 2018, 130, 1404-1407.	1.6	7
264	Successive Nucleophilic and Electrophilic Allylation for the Catalytic Enantioselective Synthesis of 2,4-Disubstituted Pyrrolidines. Organic Letters, 2019, 21, 2493-2497.	2.4	7
265	Formateâ€Mediated Crossâ€Electrophile Reductive Coupling of Aryl Iodides and Bromopyridines. Israel Journal of Chemistry, 2021, 61, 298-301.	1.0	7
266	Catalytic C-C Bond Formation and the Hendricksonian Ideal: Atom- and Redox-Economy, Stereo- and Site-Selectivity. Aldrichimica Acta, 2015, 48, 15.	4.0	7
267	Asymmetric Alcohol C–H Allylation and <i>syn</i> Crotylation: C9–C20 of Tetrafibricin. Organic Letters, 2014, 16, 820-823.	2.4	6
268	Triple Helical Ir(ppy) 3 Phenylene Cage Prepared by Diolâ€Mediated Benzannulation: Synthesis, Resolution, Absolute Stereochemistry and Photophysical Properties. Chemistry - A European Journal, 2019, 25, 8719-8724.	1.7	6
269	Kinetic, ESI–CID–MS, and Computational Studies of π-Allyliridium <i>C,O</i> -Benzoate-Catalyzed Allylic Amination: Understanding the Effect of Cesium Ion. ACS Catalysis, 2022, 12, 3660-3668.	5.5	6
270	Chiral α-Stereogenic Oxetanols and Azetidinols via Alcohol-Mediated Reductive Coupling of Allylic Acetates: Enantiotopic π-Facial Selection in Symmetric Ketone Addition. ACS Catalysis, 0, , 6172-6179.	5.5	6

#	Article	IF	CITATIONS
271	Total Synthesis of Cryptocaryol A by Enantioselective Iridiumâ€Catalyzed Alcohol Câ^'H Allylation. Angewandte Chemie, 2016, 128, 5133-5136.	1.6	5
272	C â€Propargylation Overrides O â€Propargylation in Reactions of Propargyl Chloride with Primary Alcohols: Rhodium atalyzed Transfer Hydrogenation. Angewandte Chemie, 2016, 128, 9353-9357.	1.6	4
273	Diols as Dienophiles: Bridged Carbocycles via Ruthenium(0)â€Catalyzed Transfer Hydrogenative Cycloadditions of Cyclohexadiene or Norbornadiene. Angewandte Chemie, 2017, 129, 14859-14863.	1.6	4
274	Ruthenium(0)â€katalysierte Cycloaddition von 1,2â€Diolen, Ketolen oder Dionen durch Alkoholâ€vermittelte WasserstoffA¼bertragung. Angewandte Chemie, 2018, 130, 3064-3073.	1.6	4
275	Benzannulation through Ruthenium(0)â€Catalyzed Transfer Hydrogenative Cycloaddition: Precision Synthesis and Photophysical Characterization of Soluble Diindenoperylenes. Chemistry - A European Journal, 2020, 26, 7504-7510.	1.7	4
276	Enantioselective Total Synthesis of Andrographolide and 14â€Hydroxyâ€Colladonin: Carbonyl Reductive Coupling and trans â€Decalin Formation by Hydrogen Transfer. Angewandte Chemie, 2020, 132, 23369-23373.	1.6	3
277	Regio- and Enantioselective Iridium-Catalyzed Amination of Alkyl-Substituted Allylic Acetates with Secondary Amines. Organic Letters, 2022, 24, 441-445.	2.4	3
278	Bryostatin 7., 2012, , 103-130.		2
279	Reductive C–C coupling via hydrogenation and transfer hydrogenation: Departure from stoichiometric metals in carbonyl addition. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 1-5.	3.2	2
280	Enantioselective Iridiumâ€Catalyzed Allylation of Acetylenic Ketones via 2â€Propanolâ€Mediated Reductive Coupling of Allyl Acetate: C14â€C23 of Pladienolideâ€D. Angewandte Chemie, 2019, 131, 18979-18983.	1.6	2
281	Total Synthesis of the Spliceosome Modulator Pladienolideâ€B via Asymmetric Alcoholâ€Mediated syn ―and anti â€Diastereoselective Carbonyl Crotylation. Angewandte Chemie, 2021, 133, 14042-14047.	1.6	2
282	Beyond Protecting Groups in Metal Catalyzed C–C Coupling: Direct Anomeric Propargylation of Aldoses. ACS Central Science, 2016, 2, 12-13.	5.3	1
283	Frontispiece: Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and Stateâ€ofâ€Theâ€Art Survey. Chemistry - A European Journal, 2021, 27, .	1.7	1
284	Enantioselective Iridiumâ€Catalyzed Reductive Coupling of Dienes with Oxetanones and Nâ€Acylâ€Azetidinones Mediated by 2â€Propanol. Angewandte Chemie, 0, , .	1.6	1
285	A New Catalytic C—C Bond-Forming Hydrogenation: Reductive Coupling of Dienes and Glyoxals under Catalytic Hydrogenation Conditions ChemInform, 2003, 34, no.	0.1	0
286	Regio- and Stereoselective Construction of ?-Butenolides Through Phosphine-Catalyzed Substitution of Morita?Baylis?Hillman Acetates: An Organocatalytic Allylic Alkylation ChemInform, 2005, 36, no.	0.1	0
287	Total Synthesis of Clavosolideâ€A via Asymmetric Alcoholâ€Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angewandte Chemie, 2019, 131, 10828-10832.	1.6	0
288	Ethanol: Unlocking an Abundant Renewable C 2 â€Feedstock for Catalytic Enantioselective Câ^'C Coupling. Angewandte Chemie, 2021, 133, 10636-10640.	1.6	0