Esther Bailon Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1638092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activated carbons from KOH and H 3 PO 4 -activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 2017, 229, 219-228.	5.2	221
2	lsotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Applied Catalysis B: Environmental, 2020, 265, 118538.	20.2	199
3	Insights into the Oxygen Vacancy Filling Mechanism in CuO/CeO ₂ Catalysts: A Key Step Toward High Selectivity in Preferential CO Oxidation. ACS Catalysis, 2020, 10, 6532-6545.	11.2	128
4	Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts. Catalysis Today, 2020, 356, 419-432.	4.4	111
5	Carbon–TiO ₂ composites as high-performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases. Journal of Materials Chemistry A, 2018, 6, 633-644.	10.3	99
6	New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Applied Catalysis B: Environmental, 2017, 201, 29-40.	20.2	92
7	Tailoring the surface chemistry and porosity of activated carbons: Evidence of reorganization and mobility of oxygenated surface groups. Carbon, 2014, 68, 520-530.	10.3	71
8	Catalysts Supported on Carbon Materials for the Selective Hydrogenation of Citral. Catalysts, 2013, 3, 853-877.	3.5	70
9	Synthesis of TixOy nanocrystals in mild synthesis conditions for the degradation of pollutants under solar light. Applied Catalysis B: Environmental, 2019, 241, 385-392.	20.2	61
10	Physicochemical properties of new cellulose-TiO2 composites for the removal of water pollutants: Developing specific interactions and performances by cellulose functionalization. Journal of Environmental Chemical Engineering, 2018, 6, 5032-5041.	6.7	52
11	Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. Journal of Colloid and Interface Science, 2018, 511, 193-202.	9.4	50
12	Improved asymmetrical honeycomb monolith catalyst prepared using a 3D printed template. Journal of Hazardous Materials, 2019, 368, 638-643.	12.4	48
13	Three-dimensionally ordered macroporous PrOx: An improved alternative to ceria catalysts for soot combustion. Applied Catalysis B: Environmental, 2019, 248, 567-572.	20.2	48
14	Development of Carbon-ZrO2 composites with high performance as visible-light photocatalysts. Applied Catalysis B: Environmental, 2017, 217, 540-550.	20.2	44
15	Electrochemical performances of supercapacitors from carbon-ZrO2 composites. Electrochimica Acta, 2018, 259, 803-814.	5.2	41
16	Enhancement of the Generation and Transfer of Active Oxygen in Ni/CeO ₂ Catalysts for Soot Combustion by Controlling the Ni–Ceria Contact and the Three-Dimensional Structure. Environmental Science & Technology, 2020, 54, 2439-2447.	10.0	39
17	Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation. Fuel Processing Technology, 2021, 212, 106637.	7.2	35
18	Development of Vanadiumâ€Coated Carbon Microspheres: Electrochemical Behavior as Electrodes for Supercapacitors, Advanced Functional Materials, 2018, 28, 1802337.	14.9	33

ESTHER BAILON GARCIA

#	Article	IF	CITATIONS
19	Design of Monolithic Supports by 3D Printing for Its Application in the Preferential Oxidation of CO (CO-PrOx). ACS Applied Materials & Interfaces, 2019, 11, 36763-36773.	8.0	33
20	Functionalized Cellulose for the Controlled Synthesis of Novel Carbon–Ti Nanocomposites: Physicochemical and Photocatalytic Properties. Nanomaterials, 2020, 10, 729.	4.1	33
21	From CO2 to Value-Added Products: A Review about Carbon-Based Materials for Electro-Chemical CO2 Conversion. Catalysts, 2021, 11, 351.	3.5	33
22	Customizable Heterogeneous Catalysts: Nonchanneled Advanced Monolithic Supports Manufactured by 3D-Printing for Improved Active Phase Coating Performance. ACS Applied Materials & Interfaces, 2020, 12, 54573-54584.	8.0	31
23	Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact. Applied Materials Today, 2020, 19, 100591.	4.3	30
24	Tailoring activated carbons for the development of specific adsorbents of gasoline vapors. Journal of Hazardous Materials, 2013, 263, 533-540.	12.4	28
25	Microspheres of carbon xerogel: An alternative Pt-support for the selective hydrogenation of citral. Applied Catalysis A: General, 2014, 482, 318-326.	4.3	27
26	Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. Journal of Catalysis, 2015, 327, 86-95.	6.2	23
27	Selective hydrogenation of citral by noble metals supported on carbon xerogels: Catalytic performance and stability. Applied Catalysis A: General, 2016, 512, 63-73.	4.3	22
28	Monitoring intermediate species formation by DRIFT during the simultaneous removal of soot and NOx over LaAgMnO3 catalyst. Applied Catalysis A: General, 2019, 588, 117280.	4.3	22
29	Development of carbon xerogels as alternative Pt-supports for the selective hydrogenation of citral. Catalysis Communications, 2015, 58, 64-69.	3.3	20
30	CH ₃ -Tagged Bis(pyrazolato)-Based Coordination Polymers and Metal–Organic Frameworks: An Experimental and Theoretical Insight. Crystal Growth and Design, 2017, 17, 3854-3867.	3.0	19
31	Stable NiO–CeO2 nanoparticles with improved carbon resistance for methane dry reforming. Journal of Rare Earths, 2022, 40, 57-62.	4.8	19
32	Mesoporous carbon nanospheres with improved conductivity for electro-catalytic reduction of O2 and CO2. Carbon, 2019, 155, 88-99.	10.3	17
33	Elucidating the Role of the Metal Catalyst and Oxide Support in the Ru/CeO ₂ -Catalyzed CO ₂ Methanation Mechanism. Journal of Physical Chemistry C, 2021, 125, 25533-25544.	3.1	17
34	Intrinsic kinetics of CO2 methanation on low-loaded Ni/Al2O3 catalyst: Mechanism, model discrimination and parameter estimation. Journal of CO2 Utilization, 2022, 57, 101888.	6.8	17
35	Chemoselective Pt-catalysts supported on carbon-TiO2 composites for the direct hydrogenation of citral to unsaturated alcohols. Journal of Catalysis, 2016, 344, 701-711.	6.2	16
36	Valorization of agricultural wood wastes as electrodes for electrochemical capacitors by chemical activation with H3PO4 and KOH. Wood Science and Technology, 2020, 54, 401-420.	3.2	16

#	Article	IF	CITATIONS
37	Carbon-vanadium composites as non-precious catalysts for electro-reduction of oxygen. Carbon, 2019, 144, 289-300.	10.3	15
38	Activated carbon-based coloured titania nanoparticles with high visible radiation absorption and excellent photoactivity in the degradation of emerging drugs of wastewater. Carbon, 2021, 178, 753-766.	10.3	15
39	Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation. Molecular Catalysis, 2021, 515, 111911.	2.0	15
40	Kinetics, Model Discrimination, and Parameters Estimation of CO ₂ Methanation on Highly Active Ni/CeO ₂ Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 10419-10435.	3.7	14
41	Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catalysis Communications, 2016, 82, 36-40.	3.3	13
42	Isotopic study of the La0.7Ag0.3MnOδâ‰ \$ perovskite-catalyzed soot oxidation in presence of NO. Applied Catalysis A: General, 2020, 599, 117611.	4.3	13
43	Keyâ€lock Ceria Catalysts for the Control of Diesel Engine Soot Particulate Emissions. ChemCatChem, 2020, 12, 1772-1781.	3.7	12
44	Effect of Pr in CO ₂ Methanation Ru/CeO ₂ Catalysts. Journal of Physical Chemistry C, 2021, 125, 12038-12049.	3.1	12
45	Monitoring by in situ NAP-XPS of active sites for CO2 methanation on a Ni/CeO2 catalyst. Journal of CO2 Utilization, 2022, 60, 101980.	6.8	12
46	Cobalt oxide–carbon nanocatalysts with highly enhanced catalytic performance for the green synthesis of nitrogen heterocycles through the FriedlÃ ¤ der condensation. Dalton Transactions, 2019, 48, 5637-5648.	3.3	11
47	Mineral Manganese Oxides as Oxidation Catalysts: Capabilities in the CO-PROX Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 6329-6336.	6.7	11
48	Influence of Surface Chemistry on the Electrochemical Performance of Biomass-Derived Carbon Electrodes for its Use as Supercapacitors. Materials, 2019, 12, 2458.	2.9	10
49	The use of functionalized carbon xerogels in cells growth. Materials Science and Engineering C, 2019, 100, 598-607.	7.3	10
50	Copper‣anthanum Catalysts for NOx and Soot Removal. ChemCatChem, 2020, 12, 6375-6384.	3.7	10
51	Reduction of NO with new vanadium-carbon xerogel composites. Effect of the oxidation state of vanadium species. Carbon, 2020, 156, 194-204.	10.3	9
52	PrO _x catalysts for the combustion of soot generated in diesel engines: effect of CuO and 3DOM structures. Catalysis Science and Technology, 2019, 9, 2553-2562.	4.1	8
53	Cellulose–TiO2 composites for the removal of water pollutants. , 2020, , 329-358.		8
54	Design and fabrication of integral carbon monoliths combining 3D printing and sol–gel polymerization: effects of the channel morphology on the CO-PROX reaction. Catalysis Science and Technology, 2021, 11, 6490-6497.	4.1	8

#	Article	IF	CITATIONS
55	Hydrodynamic effects on the overall adsorption rate of phenol on activated carbon cloth through the advection-diffusion model application. Journal of Industrial and Engineering Chemistry, 2021, 93, 267-278.	5.8	7
56	High Performance Tunable Catalysts Prepared by Using 3D Printing. Materials, 2021, 14, 5017.	2.9	6
57	PrOx nanoparticles: Active and stable catalysts for soot combustion. Applied Surface Science, 2021, 563, 150183.	6.1	6
58	Sponge-like carbon monoliths: Porosity control of 3D-printed carbon supports and its influence on the catalytic performance. Chemical Engineering Journal, 2022, 432, 134218.	12.7	6
59	ZrO2-TiO2/Carbon core-shell composites as highly efficient solar-driven photo-catalysts: An approach for removal of hazardous water pollutants. Journal of Environmental Chemical Engineering, 2020, 8, 104350.	6.7	5
60	Catalysts based on carbon xerogels with high catalytic activity for the reduction of NOx at low temperatures. Catalysis Today, 2020, 356, 301-311.	4.4	5
61	Carbon Microspheres with Tailored Texture and Surface Chemistry As Electrode Materials for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2021, 9, 541-551.	6.7	5
62	A new platform for facile synthesis of hybrid TiO2 nanostructures by various functionalizations of cellulose to be used in highly-efficient photocatalysis. Materials Letters, 2020, 274, 128016.	2.6	5
63	Improved Cd (II) ions removal performance from aqueous solution using cerium doped activated carbon. Materials Today: Proceedings, 2022, 51, 1957-1965.	1.8	4
64	Shaping a soot combustion Ce0.5Pr0.5Ox catalyst. Applied Surface Science, 2022, 584, 152513.	6.1	4
65	Recycling and valorization of LDPE: direct transformation into highly ordered doped-carbon materials and their application as electro-catalysts for the oxygen reduction reaction. Catalysis Science and Technology, 0, , .	4.1	3
66	Investigations of the Effect of H2 in CO Oxidation over Ceria Catalysts. Catalysts, 2021, 11, 1556.	3.5	3
67	Synthesis of modified TiO2-based catalysts for the photocatalytic production of solar fuels from synthesis gas. Catalysis Today, 2021, 379, 272-284.	4.4	2
68	Synthesis of Magnetic Adsorbents Based Carbon Highly Efficient and Stable for Use in the Removal of Pb(II) and Cd(II) in Aqueous Solution. Materials, 2021, 14, 6134.	2.9	2
69	Growing Tungsten Nanophases on Carbon Spheres Doped with Nitrogen. Behaviour as Electro-Catalysts for Oxygen Reduction Reaction. Materials, 2021, 14, 7716.	2.9	2
70	Fitting the experimental conditions and characteristics of Pt/C catalyst for the selective hydrogenation of citral. Chemical Engineering Communications, 2018, 205, 1299-1310.	2.6	1
71	3D Modeling of the Adsorption Rate of Pyridine on Activated Carbon Cloth in a Stirred Tank under Turbulent Conditions. Processes, 2022, 10, 735.	2.8	1
72	Bacteria Supported on Carbon-Coated Monoliths for Water Denitrification. Journal of Carbon Research, 2020, 6, 77.	2.7	0

#	Article	IF	CITATIONS
73	Mathematical Modeling of Preferential CO Oxidation Reactions under Advection–Diffusion Conditions in a 3D-Printed Reactive Monolith. Industrial & Engineering Chemistry Research, 0, , .	3.7	0