Reinhard Lipowsky

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1637627/reinhard-lipowsky-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

314	19,799	74	130
papers	citations	h-index	g-index
330 ext. papers	21,890 ext. citations	5.7 avg, IF	7.2 L-index

#	Paper	IF	Citations
314	Multispherical shapes of vesicles highlight the curvature elasticity of biomembranes <i>Advances in Colloid and Interface Science</i> , 2022 , 301, 102613	14.3	3
313	Integrin 日b	O	0
312	Remodeling of Membrane Shape and Topology by Curvature Elasticity and Membrane Tension. <i>Advanced Biology</i> , 2021 , e2101020		4
311	Super-Resolution Imaging of Highly Curved Membrane Structures in Giant Vesicles Encapsulating Molecular Condensates. <i>Advanced Materials</i> , 2021 , e2106633	24	4
310	Budding and Fission of Nanovesicles Induced by Membrane Adsorption of Small Solutes. <i>ACS Nano</i> , 2021 , 15, 7237-7248	16.7	5
309	Active shape oscillations of giant vesicles with cyclic closure and opening of membrane necks. <i>Soft Matter</i> , 2021 , 17, 319-330	3.6	9
308	En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. <i>Nature Communications</i> , 2021 , 12, 4972	17.4	10
307	Structural variability and concerted motions of the T cell receptor - CD3 complex. <i>ELife</i> , 2021 , 10,	8.9	2
306	Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting. <i>Advanced Science</i> , 2021 , 8, e2102109	13.6	2
305	Coarse-Grained Molecular Model for the Glycosylphosphatidylinositol Anchor with and without Protein. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 3889-3903	6.4	0
304	Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. <i>Nature Communications</i> , 2020 , 11, 905	17.4	68
303	Mechanical Tension of Biomembranes Can Be Measured by Super Resolution (STED) Microscopy of Force-Induced Nanotubes. <i>Nano Letters</i> , 2020 , 20, 3185-3191	11.5	7
302	Simple sugars shape giant vesicles into multispheres with many membrane necks. <i>Soft Matter</i> , 2020 , 16, 1246-1258	3.6	21
301	Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding. <i>Nano Letters</i> , 2020 , 20, 669-676	11.5	6
300	Unfolding mechanism and free energy landscape of single, stable, alpha helices at low pull speeds. <i>Soft Matter</i> , 2020 , 16, 9917-9928	3.6	4
299	Programming multi-protein assembly by gene-brush patterns and two-dimensional compartment geometry. <i>Nature Nanotechnology</i> , 2020 , 15, 783-791	28.7	6
298	Spherical Nanovesicles Transform into a Multitude of Nonspherical Shapes. <i>Nano Letters</i> , 2019 , 19, 770)3 1 717 5 1	10

(2018-2019)

297	Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. <i>Scientific Reports</i> , 2019 , 9, 7708	4.9	7
296	Optimizing the dynamics of protein expression. <i>Scientific Reports</i> , 2019 , 9, 7511	4.9	9
295	Bilayer Membranes with Frequent Flip-Flops Have Tensionless Leaflets. <i>Nano Letters</i> , 2019 , 19, 5011-50	116 1.5	32
294	Giant Vesicles Encapsulating Aqueous Two-Phase Systems: From Phase Diagrams to Membrane Shape Transformations. <i>Frontiers in Chemistry</i> , 2019 , 7, 213	5	9
293	Force-Dependent Unbinding Rate of Molecular Motors from Stationary Optical Trap Data. <i>Nano Letters</i> , 2019 , 19, 2598-2602	11.5	5
292	Force sharing and force generation by two teams of elastically coupled molecular motors. <i>Scientific Reports</i> , 2019 , 9, 454	4.9	6
291	Directed Growth of Biomimetic Microcompartments. <i>Advanced Biology</i> , 2019 , 3, e1800314	3.5	14
290	Understanding giant vesicles: A theoretical perspective 2019 , 73-168		4
289	Particlethembrane interactions 2019 , 211-227		
288	Understanding and controlling the morphological complexity of biomembranes. <i>Advances in Biomembranes and Lipid Self-Assembly</i> , 2019 , 105-157	1	2
287	Molecular mechanics of coiled coils loaded in the shear geometry. Chemical Science, 2018, 9, 4610-4621	9.4	38
286	Membrane Nanotubes Increase the Robustness of Giant Vesicles. ACS Nano, 2018, 12, 4478-4485	16.7	43
285	Response of Membranes and Vesicles to Capillary Forces Arising from Aqueous Two-Phase Systems and Water-in-Water Droplets. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 3572-3586	3.4	11
284	Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. <i>Nature Materials</i> , 2018 , 17, 89-96	27	211
283	The 2018 biomembrane curvature and remodeling roadmap. <i>Journal Physics D: Applied Physics</i> , 2018 , 51,	3	133
282	The Conserved ESCRT-III Machinery Participates in the Phagocytosis of. <i>Frontiers in Cellular and Infection Microbiology</i> , 2018 , 8, 53	5.9	31
281	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13382-13392	16.4	155
280	Lipids with bulky head groups generate large membrane curvatures by small compositional asymmetries. <i>Journal of Chemical Physics</i> , 2018 , 149, 084901	3.9	18

279	Decomposition of time-dependent fluorescence signals reveals codon-specific kinetics of protein synthesis. <i>Nucleic Acids Research</i> , 2018 , 46, e130	20.1	3
278	Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. <i>Scientific Reports</i> , 2018 , 8, 11838	4.9	54
277	Area Increase and Budding in Giant Vesicles Triggered by Light: Behind the Scene. <i>Advanced Science</i> , 2018 , 5, 1800432	13.6	24
276	A molecular dynamics model for glycosylphosphatidyl-inositol anchors: "flop down" or "lollipop"?. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 29314-29324	3.6	2
275	Trimeric coiled coils expand the range of strength, toughness and dynamics of coiled coil motifs under shear. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 29105-29115	3.6	10
274	Asymmetric Ionic Conditions Generate Large Membrane Curvatures. <i>Nano Letters</i> , 2018 , 18, 7816-7821	11.5	28
273	Understanding Membranes and Vesicles: A Personal Recollection of the Last Two Decades 2018 , 3-44		3
272	Nanodroplets at Membranes Create Tight-Lipped Membrane Necks via Negative Line Tension. <i>ACS Nano</i> , 2018 , 12, 12424-12435	16.7	13
271	Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins. <i>PLoS Computational Biology</i> , 2018 , 14, e1006422	5	15
270	Presynaptic Biogenesis Requires Axonal Transport of Lysosome-Related Vesicles. <i>Neuron</i> , 2018 , 99, 121	6 - 3.837	2. 5 4
269	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. <i>Angewandte Chemie</i> , 2018 , 130, 13566-13577	3.6	25
268	Membrane fluctuations and acidosis regulate cooperative binding of 'marker of self' protein CD47 with the macrophage checkpoint receptor SIRP#Journal of Cell Science, 2018, 132,	5.3	33
267	The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5756-5761	11.5	53
266	Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces. <i>Soft Matter</i> , 2017 , 13, 2155-2173	3.6	23
265	Tug-of-war between two elastically coupled molecular motors: a case study on force generation and force balance. <i>Soft Matter</i> , 2017 , 13, 328-344	3.6	5
264	Giant Vesicles Exposed to Aqueous Two-Phase Systems: Membrane Wetting, Budding Processes, and Spontaneous Tubulation. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600451	4.6	21
263	Stabilization of membrane necks by adhesive particles, substrate surfaces, and constriction forces. <i>Soft Matter</i> , 2016 , 12, 8155-8166	3.6	14
262	Solution Asymmetry and Salt Expand Fluid-Fluid Coexistence Regions of Charged Membranes. Biophysical Journal, 2016 , 110, 2581-2584	2.9	25

(2015-2016)

Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory. <i>Cell Adhesion and Migration</i> , 2016 , 10, 576-589	3.2	20
Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 1918-30	3.6	18
Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes. <i>ACS Nano</i> , 2016 , 10, 463-74	16.7	59
The role of membrane curvature for the wrapping of nanoparticles. <i>Soft Matter</i> , 2016 , 12, 581-7	3.6	50
Membrane curvature generated by asymmetric depletion layers of ions, small molecules, and nanoparticles. <i>Journal of Chemical Physics</i> , 2016 , 145, 074117	3.9	17
Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. <i>Biomacromolecules</i> , 2016 , 17, 1959-68	6.9	13
Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol). <i>Journal of Chromatography A</i> , 2016 , 1452, 107-15	4.5	16
Modulating Vesicle Adhesion by Electric Fields. <i>Biophysical Journal</i> , 2016 , 111, 1454-1464	2.9	24
External forces influence the elastic coupling effects during cargo transport by molecular motors. <i>Physical Review E</i> , 2015 , 91, 022701	2.4	20
Viscoelasticity of Poly(ethylene glycol) Solutions on Supported Lipid Bilayers via Quartz Crystal Microbalance with Dissipation. <i>Macromolecules</i> , 2015 , 48, 1824-1831	5.5	20
Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. <i>ACS Nano</i> , 2015 , 9, 3704-20	16.7	113
Adhesive Nanoparticles as Local Probes of Membrane Curvature. <i>Nano Letters</i> , 2015 , 15, 7168-73	11.5	30
Spontaneous curvature of bilayer membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption. <i>Journal of Chemical Physics</i> , 2015 , 142, 054101	3.9	72
Autophagosome closure requires membrane scission. <i>Autophagy</i> , 2015 , 11, 2134-2137	10.2	52
Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory. <i>Journal of Chemical Physics</i> , 2015 , 143, 243137	3.9	19
Association-dissociation process with aging subunits: Recursive solution. <i>Physical Review E</i> , 2015 , 92, 052137	2.4	1
Cell rigidity and shape override CD47's "self"-signaling in phagocytosis by hyperactivating myosin-II. <i>Blood</i> , 2015 , 125, 542-52	2.2	86
Binding constants of membrane-anchored receptors and ligands: A general theory corroborated by Monte Carlo simulations. <i>Journal of Chemical Physics</i> , 2015 , 143, 243136	3.9	39
	Insights from computational model systems and theory. <i>Cell Adhesion and Migration</i> , 2016 , 10, 576-589 Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 1918-30 Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes. <i>ACS Nano</i> , 2016 , 10, 463-74 The role of membrane curvature for the wrapping of nanoparticles. <i>Soft Matter</i> , 2016 , 12, 581-7 Membrane curvature generated by asymmetric depletion layers of ions, small molecules, and nanoparticles. <i>Journal of Chemical Physics</i> , 2016 , 145, 074117 Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. <i>Biomacromolecules</i> , 2016 , 17, 1959-68 Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol). <i>Journal of Chromatography A</i> , 2016 , 1452, 107-15 Modulating Vesicle Adhesion by Electric Fields. <i>Biophysical Journal</i> , 2016 , 111, 1454-1464 External forces influence the elastic coupling effects during cargo transport by molecular motors. <i>Physical Review E</i> , 2015 , 91, 022701 Viscoelasticity of Poly(ethylene glycol) Solutions on Supported Lipid Bilayers via Quartz Crystal Microbalance with Dissipation. <i>Macromolecules</i> , 2015 , 48, 1824-1831 Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. <i>ACS Nano</i> , 2015 , 9, 3704-20 Adhesive Nanoparticles as Local Probes of Membrane Curvature. <i>Nano Letters</i> , 2015 , 15, 7168-73 Spontaneous curvature of bilayer membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption. <i>Journal of Chemical Physics</i> , 2015 , 112, 124-2137 Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory. <i>Journal of Chemical Physics</i> , 2015 , 143, 243137 Association-dissociation process with aging subunits: Recursive solution. <i>Physical Review E</i> , 2015 , 92, 052137	Insights from computational model systems and theory. Cell Adhesion and Migration, 2016, 10, 576-589 Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation. Physical Chemistry Chemical Physics, 2016, 18, 1918-30 167 Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes. ACS Nano, 2016, 10, 463-74 The role of membrane curvature for the wrapping of nanoparticles. Soft Matter, 2016, 12, 581-7 The role of membrane curvature generated by asymmetric depletion layers of ions, small molecules, and nanoparticles. Journal of Chemical Physics, 2016, 145, 074117 Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction. Biomacromolecules, 2016, 17, 1959-68 Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol). Journal of Chromatography A, 2016, 1452, 107-15 Modulating Vesicle Adhesion by Electric Fields. Biophysical Journal, 2016, 111, 1454-1464 External forces influence the elastic coupling effects during cargo transport by molecular motors. Physical Review E, 2015, 91, 022701 Viscoelasticity of Poly(ethylene glycol) Solutions on Supported Lipid Bilayers via Quartz Crystal Microbalance with Dissipation. Macromolecules, 2015, 48, 1824-1831 Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS Nano, 2015, 9, 3704-20 Adhesive Nanoparticles as Local Probes of Membrane Curvature. Nano Letters, 2015, 15, 7168-73 Altophagosome closure requires membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption. Journal of Chemical Physics, 2015, 142, 054101 Autophagosome closure requires membrane scission. Autophagy, 2015, 11, 2134-2137 Association-dissociation process with aging subunits: Recursive solution. Physical Review E, 2015, 92, 052137 Cell rigidity and shape override CD47's "self"-signaling in phagocytosis by hyperactivating myosin-II. 2, 24 Binding constant

243	Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage. <i>PLoS ONE</i> , 2015 , 10, e0134994	3.7	31
242	Molecular Motors: Cooperative Phenomena of Multiple Molecular Motors 2015 , 27-61		10
241	Wrapping of nanoparticles by membranes. <i>Advances in Colloid and Interface Science</i> , 2014 , 208, 214-24	14.3	146
240	Allosteric control of kinesin's motor domain by tubulin: a molecular dynamics study. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 6189-98	3.6	10
239	Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2014 , 1838, 2036-45	3.8	22
238	Conformational diversity of O-antigen polysaccharides of the Gram-negative bacterium Shigella flexneri serotype Y. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 2523-34	3.4	14
237	Bacterial twitching motility is coordinated by a two-dimensional tug-of-war with directional memory. <i>Nature Communications</i> , 2014 , 5, 3759	17.4	58
236	Cooperative wrapping of nanoparticles by membrane tubes. <i>Soft Matter</i> , 2014 , 10, 3570-7	3.6	56
235	Coupling of bending and stretching deformations in vesicle membranes. <i>Advances in Colloid and Interface Science</i> , 2014 , 208, 14-24	14.3	63
234	Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro. <i>PLoS Computational Biology</i> , 2014 , 10, e1003909	5	34
233	Remodeling of membrane compartments: some consequences of membrane fluidity. <i>Biological Chemistry</i> , 2014 , 395, 253-74	4.5	45
232	Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids. <i>PLoS ONE</i> , 2014 , 9, e115357	3.7	44
231	Elastic Coupling Effects in Cooperative Transport by a Pair of Molecular Motors. <i>Cellular and Molecular Bioengineering</i> , 2013 , 6, 48-64	3.9	15
230	Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. <i>Faraday Discussions</i> , 2013 , 161, 305-31; discussion 419-59	3.6	179
229	Effect of ribosome shielding on mRNA stability. <i>Physical Biology</i> , 2013 , 10, 046008	3	34
228	Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 15283-8	11.5	92
227	Domain formation in cholesterolphospholipid membranes exposed to adhesive surfaces or environments. <i>Soft Matter</i> , 2013 , 9, 8438	3.6	19
226	Effect of tension and curvature on the chemical potential of lipids in lipid aggregates. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 876-81	3.6	17

225	Network Complexity and Parametric Simplicity for Cargo Transport by Two Molecular Motors. Journal of Statistical Physics, 2013 , 150, 205-234	1.5	14
224	Bifurcation of velocity distributions in cooperative transport of filaments by fast and slow motors. <i>Biophysical Journal</i> , 2013 , 104, 666-76	2.9	10
223	Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol. <i>Biophysical Journal</i> , 2013 , 104, 1456-64	2.9	74
222	Standard Gibbs energies of formation and equilibrium constants from ab-initio calculations: Covalent dimerization of NO2 and synthesis of NH3. <i>Journal of Chemical Thermodynamics</i> , 2013 , 62, 21	1- 2 21	5
221	Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 5793-805	3.4	37
220	On phosphate release in actin filaments. <i>Biophysical Journal</i> , 2013 , 104, 2778-9	2.9	2
219	Cooperative slowdown of water rotation near densely charged ions is intense but short-ranged. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 10556-66	3.4	21
218	Adhesion-induced phase behavior of two-component membranes and vesicles. <i>International Journal of Molecular Sciences</i> , 2013 , 14, 2203-29	6.3	8
217	Complex degradation processes lead to non-exponential decay patterns and age-dependent decay rates of messenger RNA. <i>PLoS ONE</i> , 2013 , 8, e55442	3.7	32
216	Dwell time distributions of the molecular motor myosin V. <i>PLoS ONE</i> , 2013 , 8, e55366	3.7	7
215	Wetting-induced budding of vesicles in contact with several aqueous phases. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 1819-23	3.4	29
214	Mechanical compressibility of the glycosylphosphatidylinositol (GPI) anchor backbone governed by independent glycosidic linkages. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18964-72	16.4	29
213	Concentration dependence of the interfacial tension for aqueous two-phase polymer solutions of dextran and polyethylene glycol. <i>Langmuir</i> , 2012 , 28, 3831-9	4	84
212	Intermittent depolymerization of actin filaments is caused by photo-induced dimerization of actin protomers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 10769-74	11.5	31
211	Distinct transport regimes for two elastically coupled molecular motors. <i>Physical Review Letters</i> , 2012 , 108, 208101	7.4	56
210	Critical motor number for fractional steps of cytoskeletal filaments in gliding assays. <i>PLoS ONE</i> , 2012 , 7, e43219	3.7	4
209	Lipid membranes in contact with aqueous phases of polymer solutions. <i>Soft Matter</i> , 2012 , 8, 6409	3.6	34
208	Tubulation and aggregation of spherical nanoparticles adsorbed on vesicles. <i>Physical Review Letters</i> , 2012 , 109, 188102	7.4	115

207	Curvature of double-membrane organelles generated by changes in membrane size and composition. <i>PLoS ONE</i> , 2012 , 7, e32753	3.7	39
206	Chemomechanical coupling and motor cycles of myosin V. <i>Biophysical Journal</i> , 2011 , 100, 1747-55	2.9	30
205	Line tension and stability of domains in cell-adhesion zones mediated by long and short receptor-ligand complexes. <i>PLoS ONE</i> , 2011 , 6, e23284	3.7	24
204	Co-operative transport by molecular motors. <i>Biochemical Society Transactions</i> , 2011 , 39, 1211-5	5.1	20
203	Translation by Ribosomes with mRNA Degradation: Exclusion Processes on Aging Tracks. <i>Journal of Statistical Physics</i> , 2011 , 145, 1385-1404	1.5	13
202	Droplet-induced budding transitions of membranes. <i>Soft Matter</i> , 2011 , 7, 6914	3.6	24
201	Vesicles with multiple membrane domains. <i>Soft Matter</i> , 2011 , 7, 6092	3.6	58
200	Importance of polar solvation for cross-reactivity of antibody and its variants with steroids. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 7661-9	3.4	32
199	Length-dependent translation of messenger RNA by ribosomes. <i>Physical Review E</i> , 2011 , 83, 042903	2.4	18
198	Sequences of phase transitions in Ising models on correlated networks. <i>Physical Review E</i> , 2011 , 83, 06	1 122.39	4
197	Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 4731-6	11.5	120
196	Transient binding of dynein controls bidirectional long-range motility of early endosomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 3618-23	11.5	124
195	Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin. <i>PLoS Biology</i> , 2011 , 9, e1001161	9.7	105
194	Asymptotic properties of degree-correlated scale-free networks. <i>Physical Review E</i> , 2010 , 81, 046103	2.4	33
193	Treadmilling of actin filaments via Brownian dynamics simulations. <i>Journal of Chemical Physics</i> , 2010 , 133, 155105	3.9	11
192	Bidirectional transport by molecular motors: enhanced processivity and response to external forces. <i>Biophysical Journal</i> , 2010 , 98, 2610-8	2.9	83
191	Morphological wetting transitions at ring-shaped surface domains. <i>Langmuir</i> , 2010 , 26, 11878-85	4	17
190	Stability of spherical vesicles in electric fields. <i>Langmuir</i> , 2010 , 26, 12390-407	4	51

189	Equilibrium morphologies and effective spring constants of capillary bridges. <i>Langmuir</i> , 2010 , 26, 1873	4 -4 1	33
188	Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6710-8	16.4	118
187	Fusion-relevant changes in lipid shape of hydrated cholesterol hemisuccinate induced by pH and counterion species. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 14941-6	3.4	11
186	Semiflexible polymer rings on topographically and chemically structured surfaces. <i>Soft Matter</i> , 2010 , 6, 5461	3.6	5
185	Modelling semiflexible polymers: shape analysis, buckling instabilities, and force generation. <i>Soft Matter</i> , 2010 , 6, 5764	3.6	12
184	Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. <i>Soft Matter</i> , 2010 , 6, 1472	3.6	232
183	Cargo Transport by Teams of Molecular Motors: Basic Mechanisms for Intracellular Drug Delivery 2010 , 289-309		1
182	Interactions of alkali metal chlorides with phosphatidylcholine vesicles. <i>Langmuir</i> , 2010 , 26, 18951-8	4	104
181	Impact of Slip Cycles on the Operation Modes and Efficiency of Molecular Motors. <i>Journal of Statistical Physics</i> , 2010 , 141, 1-16	1.5	10
180	Cooperative behavior of molecular motors: Cargo transport and traffic phenomena. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2010 , 42, 649-661	3	32
179	Traffic by multiple species of molecular motors. <i>Physical Review E</i> , 2009 , 80, 041928	2.4	19
178	Actin polymerization and depolymerization coupled to cooperative hydrolysis. <i>Physical Review Letters</i> , 2009 , 103, 048102	7.4	28
177	Intrinsic contact angle of aqueous phases at membranes and vesicles. <i>Physical Review Letters</i> , 2009 , 103, 238103	7.4	39
176	Adhesion of surfaces via particle adsorption: exact results for a lattice of fluid columns. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P11006	1.9	1
175	Self-assembly of actin monomers into long filaments: Brownian dynamics simulations. <i>Journal of Chemical Physics</i> , 2009 , 131, 015102	3.9	16
174	Stochastic simulations of cargo transport by processive molecular motors. <i>Journal of Chemical Physics</i> , 2009 , 131, 245107	3.9	43
173	Dissipative particle dynamics of tension-induced membrane fusion. <i>Molecular Simulation</i> , 2009 , 35, 554	-5260	12
172	ACTIVE BIO-SYSTEMS: FROM SINGLE MOTOR MOLECULES TO COOPERATIVE CARGO TRANSPORT. <i>Biophysical Reviews and Letters</i> , 2009 , 04, 77-137	1.2	11

171	Transport by Molecular Motors in the Presence of Static Defects. <i>Journal of Statistical Physics</i> , 2009 , 135, 241-260	1.5	18
170	Energy Conversion by Molecular Motors Coupled to Nucleotide Hydrolysis. <i>Journal of Statistical Physics</i> , 2009 , 135, 951-975	1.5	21
169	Nanoparticle formation in giant vesicles: synthesis in biomimetic compartments. <i>Small</i> , 2009 , 5, 2033-7	11	51
168	Morphological transitions of liquid droplets on circular surface domains. <i>Langmuir</i> , 2009 , 25, 13493-502	4	6
167	The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. <i>Biophysical Journal</i> , 2009 , 96, 2658-75	2.9	139
166	Adhesion of membranesviareceptorlgand complexes: Domain formation, binding cooperativity, and active processes. <i>Soft Matter</i> , 2009 , 5, 3213	3.6	81
165	Vesicles in electric fields: Some novel aspects of membrane behavior. <i>Soft Matter</i> , 2009 , 5, 3201	3.6	124
164	Binding cooperativity of membrane adhesion receptors. <i>Soft Matter</i> , 2009 , 5, 3354	3.6	55
163	Polymorphism of vesicles with multi-domain patterns. <i>Soft Matter</i> , 2009 , 5, 3303	3.6	28
162	Self-assembling network and bundle structures in systems of rods and crosslinkers A Monte Carlo study. <i>Soft Matter</i> , 2009 , 5, 1504	3.6	16
161	Traffic by Small Teams of Molecular Motors 2009 , 695-700		
160	Transport of beads by several kinesin motors. <i>Biophysical Journal</i> , 2008 , 94, 532-41	2.9	153
159	Morphological transitions of vesicles induced by alternating electric fields. <i>Biophysical Journal</i> , 2008 , 95, L19-21	2.9	77
158	Tension-induced vesicle fusion: pathways and pore dynamics. <i>Soft Matter</i> , 2008 , 4, 1208-1214	3.6	84
157	Membrane flow patterns in multicomponent giant vesicles induced by alternating electric fields Electronic supplementary information (ESI) available: Vesicle preparation procedure, numerical calculations and confocal microscopy movies of domain motion. See DOI:	3.6	32
156	10.1039/b811876kClick here for additional data file.Click here for additional data file.Click here for Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors.tter, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4609-14	11.5	397
155	Transition from complete to partial wetting within membrane compartments. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12252-3	16.4	56
154	Effects of the chemomechanical stepping cycle on the traffic of molecular motors. <i>Physical Review E</i> , 2008 , 78, 041909	2.4	36

153	Stable patterns of membrane domains at corrugated substrates. <i>Physical Review Letters</i> , 2008 , 100, 09	81,03	37
152	Motility States of Molecular Motors Engaged in a Stochastic Tug-of-War. <i>Journal of Statistical Physics</i> , 2008 , 133, 1059-1081	1.5	51
151	Giant vesicles in electric fields. Soft Matter, 2007, 3, 817-827	3.6	169
150	Conformational diversity of the fibrillogenic fusion peptide B18 in different environments from molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4161-70	3.4	16
149	Novel method for measuring the adhesion energy of vesicles. <i>Langmuir</i> , 2007 , 23, 5423-9	4	32
148	Behavior of giant vesicles with anchored DNA molecules. <i>Biophysical Journal</i> , 2007 , 92, 4356-68	2.9	58
147	Chemomechanical Coupling of Molecular Motors: Thermodynamics, Network Representations, and Balance Conditions. <i>Journal of Statistical Physics</i> , 2007 , 130, 39-67	1.5	45
146	Activity patterns on random scale-free networks: global dynamics arising from local majority rules. Journal of Statistical Mechanics: Theory and Experiment, 2007 , 2007, P01009-P01009	1.9	3
145	Pathway of membrane fusion with two tension-dependent energy barriers. <i>Physical Review Letters</i> , 2007 , 98, 218101	7.4	147
144	Stretching of buckled filaments by thermal fluctuations. <i>Physical Review E</i> , 2007 , 76, 061914	2.4	29
143	Kinesin's network of chemomechanical motor cycles. <i>Physical Review Letters</i> , 2007 , 98, 258102	7.4	135
142	VISUALIZING SOFT MATTER: MESOSCOPIC SIMULATIONS OF MEMBRANES, VESICLES AND NANOPARTICLES. <i>Biophysical Reviews and Letters</i> , 2007 , 02, 33-55	1.2	17
141	Improved dissipative particle dynamics simulations of lipid bilayers. <i>Journal of Chemical Physics</i> , 2007 , 126, 015101	3.9	81
140	Cooperative Behaviour of Semiflexible Polymers and Filaments 2007 , 239-249		2
139	Traffic of Molecular Motors 2007 , 251-261		3
138	FILAMENT ORDERING AND CLUSTERING BY MOLECULAR MOTORS IN MOTILITY ASSAYS. Biophysical Reviews and Letters, 2006 , 01, 363-374	1.2	3
137	ELECTROFUSION OF MODEL LIPID MEMBRANES VIEWED WITH HIGH TEMPORAL RESOLUTION. <i>Biophysical Reviews and Letters</i> , 2006 , 01, 387-400	1.2	23
136	COOPERATIVE TRANSPORT BY SMALL TEAMS OF MOLECULAR MOTORS. <i>Biophysical Reviews and Letters</i> , 2006 , 01, 353-361	1.2	3

135	Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15841-6	11.5	195
134	Adhesion of membranes via switchable molecules. <i>Physical Review E</i> , 2006 , 73, 061908	2.4	11
133	Adhesion of membranes with active stickers. <i>Physical Review Letters</i> , 2006 , 96, 048101	7.4	24
132	A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. Journal of Physics Condensed Matter, 2006 , 18, S1151-76	1.8	229
131	Novel Low-Density Structure for Hard Rods with Adhesive End Groups. <i>Macromolecules</i> , 2006 , 39, 7138-	·751 \$ 13	11
130	Enhanced ordering of interacting filaments by molecular motors. <i>Physical Review Letters</i> , 2006 , 96, 258	193 ₄	78
129	The computational route from bilayer membranes to vesicle fusion. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, S1191-219	1.8	57
128	Line tension effects for liquid droplets on circular surface domains. <i>Langmuir</i> , 2006 , 22, 11041-59	4	37
127	Chapter 4 Membrane Adhesion and Domain Formation. <i>Behavior Research Methods</i> , 2006 , 63-127	6.1	13
126	Molecular motor traffic: From biological nanomachines to macroscopic transport. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 372, 34-51	3.3	88
125	Buckling, Bundling, and Pattern Formation: From Semi-Flexible Polymers to Assemblies of Interacting Filaments. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 898-911	0.3	7
124	The influence of non-anchored polymers on the curvature of vesicles. <i>Molecular Physics</i> , 2005 , 103, 3169	9 1 3 / 183	11
123	Dissipative particle dynamics simulations of polymersomes. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 17708-14	3.4	160
122	Cooperative cargo transport by several molecular motors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 17284-9	11.5	297
121	Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments. <i>Biophysical Journal</i> , 2005 , 88, 3118-32	2.9	52
120	Walks of molecular motors interacting with immobilized filaments. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 350, 122-130	3.3	4
119	Life is motion⊡multiscale motility of molecular motors. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 352, 53-112	3.3	81
118	Movements of molecular motors: Ratchets, random walks and traffic phenomena. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2005 , 29, 380-389	3	19

117	Tension-induced fusion of bilayer membranes and vesicles. <i>Nature Materials</i> , 2005 , 4, 225-8	27	336
116	Wetting morphologies at microstructured surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 1848-52	11.5	305
115	Droplets, bubbles, and vesicles at chemically structured surfaces. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S537-S558	1.8	37
114	Molecular motor traffic in a half-open tube. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S3839-50	1.8	27
113	Wetting, budding, and fusionthorphological transitions of soft surfaces. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S2885-S2902	1.8	19
112	Duality mapping and unbinding transitions of semiflexible and directed polymers. <i>Journal of Physics A</i> , 2005 , 38, L155-L161		13
111	Stability of liquid channels or filaments in the presence of line tension. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 2349-2364	1.8	36
110	Discontinuous unbinding transitions of filament bundles. <i>Physical Review Letters</i> , 2005 , 95, 038102	7.4	44
109	Temperature dependence of vesicle adhesion. <i>Physical Review E</i> , 2005 , 71, 011903	2.4	23
108	Free fluid vesicles are not exactly spherical. <i>Physical Review E</i> , 2005 , 71, 051602	2.4	21
107	Active diffusion of motor particles. <i>Physical Review Letters</i> , 2005 , 95, 268102	7.4	39
106	Dynamic pattern evolution on scale-free networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 10052-7	11.5	60
106		0.9	60 56
	Of the United States of America, 2005, 102, 10052-7 Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify	0.9	
105	Of the United States of America, 2005, 102, 10052-7 Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities. Lecture Notes in Computer Science, 2004, 1062-1069	0.9	56
105	Of the United States of America, 2005, 102, 10052-7 Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities. Lecture Notes in Computer Science, 2004, 1062-1069 Asymmetric simple exclusion processes with diffusive bottlenecks. Physical Review E, 2004, 70, 066104 Random walks of molecular motors arising from diffusional encounters with immobilized filaments.	0.9	56 28
105	Network Brownian Motion: A New Method to Measure Vertex-Vertex Proximity and to Identify Communities and Subcommunities. Lecture Notes in Computer Science, 2004, 1062-1069 Asymmetric simple exclusion processes with diffusive bottlenecks. Physical Review E, 2004, 70, 066104 Random walks of molecular motors arising from diffusional encounters with immobilized filaments. Physical Review E, 2004, 69, 061911	0.9	56 28 37

99	Vesicles And Biomembranes 2003 ,		2
98	Traffic of Molecular Motors Through Tube-Like Compartments. <i>Journal of Statistical Physics</i> , 2003 , 113, 233-268	1.5	167
97	Molecular Motor Cycles: From Ratchets to Networks. <i>Journal of Statistical Physics</i> , 2003 , 110, 1141-1167	7 1.5	25
96	Binding of Polymers to Calcite Crystals in Water: Characterization by Isothermal Titration Calorimetry. <i>Langmuir</i> , 2003 , 19, 6097-6103	4	36
95	Domains and rafts in membranes - hidden dimensions of selforganization. <i>Journal of Biological Physics</i> , 2002 , 28, 195-210	1.6	50
94	Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. <i>Journal of Chemical Physics</i> , 2002 , 117, 5048-5061	3.9	306
93	Wetting morphologies on substrates with striped surface domains. <i>Journal of Applied Physics</i> , 2002 , 92, 4296-4306	2.5	161
92	Morphological wetting transitions at chemically structured surfaces. <i>Current Opinion in Colloid and Interface Science</i> , 2001 , 6, 40-48	7.6	80
91	Structured Surfaces and Morphological Wetting Transitions. <i>Journal of Materials Science</i> , 2001 , 9, 105-1	15	25
90	Budding dynamics of multicomponent membranes. <i>Physical Review Letters</i> , 2001 , 86, 3911-4	7.4	171
89	Random walks of cytoskeletal motors in open and closed compartments. <i>Physical Review Letters</i> , 2001 , 87, 108101	7.4	213
88	Adhesion-induced phase behavior of multicomponent membranes. <i>Physical Review E</i> , 2001 , 64, 011903	2.4	62
87	Liquid Bridges in Chemically Structured Slit Pores. <i>Langmuir</i> , 2001 , 17, 3390-3399	4	41
86	Perforated Wetting Layers from Periodic Patterns of Lyophobic Surface Domains. <i>Langmuir</i> , 2001 , 17, 7814-7822	4	22
85	Wetting and dewetting of structured and imprinted surfaces. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 161, 3-22	5.1	87
84	Molecular motors and nonuniform ratchets. European Biophysics Journal, 2000, 29, 542-8	1.9	9
83	Universal aspects of the chemomechanical coupling for molecular motors. <i>Physical Review Letters</i> , 2000 , 85, 4401-4	7.4	46
82	Unbinding transitions and phase separation of multicomponent membranes. <i>Physical Review E</i> , 2000 , 62, R45-8	2.4	40

81	Molecular Motors and Stochastic Models 2000 , 21-31		7
80	Local Adhesion of Membranes to Striped Surface Domains. <i>Langmuir</i> , 2000 , 16, 9338-9346	4	14
79	From membranes to membrane machines 1999 , 1-23		3
78	Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. <i>European Biophysics Journal</i> , 1999 , 28, 174-178	1.9	95
77	Liquid morphologies on structured surfaces: from microchannels to microchips. <i>Science</i> , 1999 , 283, 46-9	33.3	871
76	Mobility and Elasticity of Self-Assembled Membranes. <i>Physical Review Letters</i> , 1999 , 82, 221-224	7.4	421
75	Membrane curvature induced by polymers and colloids. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1998 , 249, 536-543	3.3	47
74	Contact Angles on Heterogeneous Surfaces: A New Look at Cassie's and Wenzel's Laws. <i>Langmuir</i> , 1998 , 14, 6772-6780	4	267
73	Computer simulations of bilayer membranes: Self-assembly and interfacial tension. <i>Journal of Chemical Physics</i> , 1998 , 108, 7397-7409	3.9	449
72	Morphological Transitions of Wetting Layers on Structured Surfaces. <i>Physical Review Letters</i> , 1998 , 80, 1920-1923	7.4	224
71	Scaling Properties of Interfaces and Membranes 1998 , 227-245		
70	Driven Ratchets with Disordered Tracks. <i>Physical Review Letters</i> , 1997 , 79, 2895-2898	7.4	70
69	Flexible membranes with anchored polymers. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1997 , 128, 255-264	5.1	48
68	Local contacts of membranes and strings. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1997 , 244, 164-175	3.3	10
67	Fluid Vesicles in Shear Flow. <i>Physical Review Letters</i> , 1996 , 77, 3685-3688	7.4	274
66	Shape transformations of vesicles with intramembrane domains. <i>Physical Review E</i> , 1996 , 53, 2670-2683	2.4	236
65	Elastic Properties of Polymer-Decorated Membranes. <i>Journal De Physique II</i> , 1996 , 6, 1465-1481		91
64	Flexible membranes with anchored polymers. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 463, 81		1

63	Adhesion of Membranes via Anchored Stickers. <i>Physical Review Letters</i> , 1996 , 77, 1652-1655	7.4	77
62	Discontinuous Phase Transitions of Membranes: a Monte Carlo Study. <i>Journal De Physique II</i> , 1996 , 6, 255-270		11
61	From bunches of membranes to bundles of strings. European Physical Journal B, 1995, 97, 193-203	1.2	32
60	The morphology of lipid membranes. <i>Current Opinion in Structural Biology</i> , 1995 , 5, 531-40	8.1	111
59	Preface to Volume 1A from Cells to Vesicles: Introduction and Overview. <i>Handbook of Biological Physics</i> , 1995 , ix-x		4
58	Renormalization of hydration forces by collective protrusion modes. <i>Biophysical Chemistry</i> , 1994 , 49, 27-37	3.5	44
57	Universal Aspects of Interacting Lines and Surfaces 1994 , 169-206		1
56	Three interacting strings in two dimensions: non-universal and multiple unbinding transitions. <i>Journal De Physique, I</i> , 1994 , 4, 47-75		7
55	Discontinuous unbinding transitions of flexible membranes. <i>Journal De Physique II</i> , 1994 , 4, 1755-1762		20
54	Domain-induced budding of fluid membranes. <i>Biophysical Journal</i> , 1993 , 64, 1133-8	2.9	156
53	Domain-induced budding of fluid membranes. <i>Biophysical Journal</i> , 1993 , 64, 1133-8 Conformal degeneracy and conformal diffusion of vesicles. <i>Physical Review Letters</i> , 1993 , 71, 452-455	2.9 7.4	156 49
		7.4	
53	Conformal degeneracy and conformal diffusion of vesicles. <i>Physical Review Letters</i> , 1993 , 71, 452-455	7.4	49
53 52	Conformal degeneracy and conformal diffusion of vesicles. <i>Physical Review Letters</i> , 1993 , 71, 452-455 Unbinding of symmetric and asymmetric stacks of membranes. <i>Physical Review Letters</i> , 1993 , 71, 3596-2	7·4 3 5 99	49 41
53 52 51	Conformal degeneracy and conformal diffusion of vesicles. <i>Physical Review Letters</i> , 1993 , 71, 452-455 Unbinding of symmetric and asymmetric stacks of membranes. <i>Physical Review Letters</i> , 1993 , 71, 3596-2005 Critical behavior of three interacting strings. <i>Physical Review E</i> , 1993 , 47, 3039-3042 Critical roughening of interfaces: A new class of renormalizable field theories. <i>Physical Review</i>	7·4 35/9p 2·4	49 41 10
53 52 51 50	Conformal degeneracy and conformal diffusion of vesicles. <i>Physical Review Letters</i> , 1993 , 71, 452-455 Unbinding of symmetric and asymmetric stacks of membranes. <i>Physical Review Letters</i> , 1993 , 71, 3596-2 Critical behavior of three interacting strings. <i>Physical Review E</i> , 1993 , 47, 3039-3042 Critical roughening of interfaces: A new class of renormalizable field theories. <i>Physical Review Letters</i> , 1993 , 70, 1131-1134 Statistical physics of flexible membranes. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1993 ,	7·4 35/98 2·4	49 41 10 15
53 52 51 50 49	Conformal degeneracy and conformal diffusion of vesicles. <i>Physical Review Letters</i> , 1993 , 71, 452-455 Unbinding of symmetric and asymmetric stacks of membranes. <i>Physical Review Letters</i> , 1993 , 71, 3596-2 Critical behavior of three interacting strings. <i>Physical Review E</i> , 1993 , 47, 3039-3042 Critical roughening of interfaces: A new class of renormalizable field theories. <i>Physical Review Letters</i> , 1993 , 70, 1131-1134 Statistical physics of flexible membranes. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1993 , 194, 114-127	7·4 3599 2·4 7·4 3·3	49 41 10 15 11

45	The physics of flexible membranes 1992 , 19-44		1
44	Budding of membranes induced by intramembrane domains. <i>Journal De Physique II</i> , 1992 , 2, 1825-1840		201
43	Fluctuations and stability of polymerized vesicles. <i>Journal De Physique II</i> , 1992 , 2, 1563-1575		13
42	Critical Phenomena at Surfaces and Interfaces 1992 , 107-121		
41	Critical Behavior of Interfaces: Roughening and Wetting Phenomena. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 237, 11		1
40	The Conformation of Flexible Membranes. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 248, 47		
39	Critical behavior of interacting manifolds. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1991 , 177, 182-188	3.3	6
38	The conformation of membranes. <i>Nature</i> , 1991 , 349, 475-81	50.4	814
37	Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. <i>Physical Review A</i> , 1991 , 44, 1182-1202	2.6	699
36	Lipowsky and Girardet reply. <i>Physical Review Letters</i> , 1991 , 67, 1670	7.4	4
35	Surface melting away from equilibrium. <i>Physical Review B</i> , 1991 , 43, 3507-3513	3.3	21
34	Universality classes for wetting in two-dimensional random-bond systems. <i>Physical Review B</i> , 1991 , 44, 13042-13052	3.3	15
33	Adhesion of Vesicles and Membranes. Molecular Crystals and Liquid Crystals, 1991, 202, 17-25		138
32	Adhesion of membranes: a theoretical perspective. <i>Langmuir</i> , 1991 , 7, 1867-1873	4	68
31	Lipowsky et al. reply. <i>Physical Review Letters</i> , 1990 , 64, 2105	7.4	5
30	Shape fluctuations of polymerized or solidlike membranes. <i>Physical Review Letters</i> , 1990 , 65, 2893-2896	57.4	66
29	Adhesion of vesicles. <i>Physical Review A</i> , 1990 , 42, 4768-4771	2.6	420
28	Absence of first-order unbinding transitions of fluid and polymerized membranes. <i>Physical Review A</i> , 1990 , 41, 4574-4577	2.6	21

27	Binding and unbinding of lipid membranes: A Monte Carlo study. <i>Physical Review Letters</i> , 1989 , 62, 1572	- 7 1.5475	84
26	Multicomponent order parameter for surface melting. <i>Physical Review Letters</i> , 1989 , 62, 913-916	7.4	70
25	Adsorption transitions of polymers and crumpled membranes. <i>Physical Review A</i> , 1989 , 40, 2078-2081	2.6	21
24	Parabolic renormalization-group flow for interfaces and membranes. <i>Physical Review Letters</i> , 1989 , 62, 704-707	7.4	28
23	Wetting in a two-dimensional random-bond Ising model. <i>Physical Review B</i> , 1989 , 39, 2632-2639	3.3	9
22	Recent results on surface-induced disorder and surface melting. Ferroelectrics, 1989, 89, 278-282	0.6	
21	Renormalized Interactions of Interfaces, Membranes and Polymers. <i>Physica Scripta</i> , 1989 , T29, 259-264	2.6	32
20	Equilibrium crystal shapes of ideal and random quasicrystals. <i>Physical Review Letters</i> , 1988 , 60, 2394-239	97.4	28
19	Vortex behavior in high-Tc superconductors with disorder. <i>Physical Review Letters</i> , 1988 , 61, 2508	7.4	43
18	Stretched-exponential relaxation of birefringence in a critical binary mixture. <i>Physical Review B</i> , 1988 , 38, 7223-7226	3.3	41
17	Complete wetting or near-critical adsorption?. Physical Review Letters, 1988, 60, 242	7.4	7
16	Surface critical phenomena at first-order phase transitions. Ferroelectrics, 1987, 73, 69-81	0.6	91
15	Scaling regimes and functional renormalization for wetting transitions. <i>Physical Review B</i> , 1987 , 36, 212	6 3 23141	181
14	Wetting on cylinders and spheres. <i>Physical Review B</i> , 1987 , 36, 8725-8735	3.3	91
13	Complete unbinding and quasi-long-range order in lamellar phases. <i>Physical Review B</i> , 1987 , 35, 7004-70	93	99
12	Interface roughening in two-dimensional quasicrystals. <i>Physical Review Letters</i> , 1987 , 59, 1679-1682	7.4	49
11	Extreme swelling of lamellar phases. <i>Physical Review Letters</i> , 1987 , 58, 1796	7.4	18
10	Unbinding Transitions of Interacting Membranes. <i>Physical Review Letters</i> , 1987 , 59, 1983-1983	7.4	22

LIST OF PUBLICATIONS

9	Diffusion-limited growth of wetting layers. <i>Physical Review Letters</i> , 1986 , 57, 353-356	7.4	83	
8	Unusual bifurcation of renormalization-group fixed points for interfacial transitions. <i>Physical Review Letters</i> , 1986 , 57, 2411-2414	7.4	59	
7	Wetting in random systems. <i>Physical Review Letters</i> , 1986 , 56, 472-475	7.4	75	
6	Unbinding transitions of interacting membranes. <i>Physical Review Letters</i> , 1986 , 56, 2541-2544	7.4	300	
5	Melting at grain boundaries and surfaces. <i>Physical Review Letters</i> , 1986 , 57, 2876	7.4	45	
4	Interfacial phase transitions of microemulsions. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1986 , 82, 1739		11	
3	Critical Surface Phenomena at First-Order Bulk Transitions. <i>Physical Review Letters</i> , 1982 , 49, 1575-1578	37.4	330	
2	On the theory of turbulence: A non eulerian renormalized expansion. <i>Zeitschrift Fil Physik B Condensed Matter and Quanta</i> , 1979 , 33, 223-231		7	
1	Super-elasticity of plasma- and synthetic membranes by coupling of membrane asymmetry and liquid-liquid phase separation		1	