Aiwen Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1637363/publications.pdf

Version: 2024-02-01

460 papers

38,743 citations

105 h-index 168 g-index

637 all docs

637 docs citations

637 times ranked

16267 citing authors

#	Article	IF	Citations
1	Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Chemical Reviews, 2011, 111, 1780-1824.	23.0	1,767
2	Recent Advances in Radical C–H Activation/Radical Cross-Coupling. Chemical Reviews, 2017, 117, 9016-9085.	23.0	996
3	Oxidative Coupling between Two Hydrocarbons: An Update of Recent C–H Functionalizations. Chemical Reviews, 2015, 115, 12138-12204.	23.0	926
4	Electrochemical Oxidative Cross-coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation. CheM, 2018, 4, 27-45.	5.8	635
5	Synthetic applications of photoredox catalysis with visible light. Organic and Biomolecular Chemistry, 2013, 11, 2387.	1.5	607
6	Organocatalysis in Cross-Coupling: DMEDA-Catalyzed Direct Câ^'H Arylation of Unactivated Benzene. Journal of the American Chemical Society, 2010, 132, 16737-16740.	6.6	547
7	Recent Advances in Oxidative R ¹ -H/R ² -H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chemical Reviews, 2019, 119, 6769-6787.	23.0	539
8	Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. Accounts of Chemical Research, 2019, 52, 3309-3324.	7.6	499
9	Dioxygen-Triggered Oxidative Radical Reaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward \hat{l}^2 -Keto Sulfones. Journal of the American Chemical Society, 2013, 135, 11481-11484.	6.6	442
10	Oxidative Carbonylation Reactions: Organometallic Compounds (RM) or Hydrocarbons (RH) as Nucleophiles. Angewandte Chemie - International Edition, 2011, 50, 10788-10799.	7.2	439
11	Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bonds involving organometallic reagents as nucleophiles. Chemical Society Reviews, 2011, 40, 2761.	18.7	425
12	Visibleâ€Lightâ€Mediated Decarboxylation/Oxidative Amidation of αâ€Keto Acids with Amines under Mild Reaction Conditions Using O ₂ . Angewandte Chemie - International Edition, 2014, 53, 502-506.	7.2	375
13	Aerobic Oxysulfonylation of Alkenes Leading to Secondary and Tertiary βâ€Hydroxysulfones. Angewandte Chemie - International Edition, 2013, 52, 7156-7159.	7.2	361
14	Recent Advances of Transition-Metal Catalyzed Radical Oxidative Cross-Couplings. Accounts of Chemical Research, 2014, 47, 3459-3470.	7.6	324
15	External Oxidant-Free Oxidative Cross-Coupling: A Photoredox Cobalt-Catalyzed Aromatic C–H Thiolation for Constructing C–S Bonds. Journal of the American Chemical Society, 2015, 137, 9273-9280.	6.6	323
16	Olefinic C–H functionalization through radical alkenylation. Chemical Society Reviews, 2015, 44, 1070-1082.	18.7	301
17	Silver-Mediated Oxidative C–H/C–H Functionalization: A Strategy To Construct Polysubstituted Furans. Journal of the American Chemical Society, 2012, 134, 5766-5769.	6.6	297
18	Electrocatalytic Oxidantâ€Free Dehydrogenative Câ^'H/Sâ^'H Crossâ€Coupling. Angewandte Chemie - International Edition, 2017, 56, 3009-3013.	7.2	288

#	Article	IF	CITATIONS
19	Cobalt(II)-Catalyzed Electrooxidative C–H Amination of Arenes with Alkylamines. Journal of the American Chemical Society, 2018, 140, 4195-4199.	6.6	272
20	Direct Functionalization of Tetrahydrofuran and 1,4â€Dioxane: Nickelâ€Catalyzed Oxidative C(sp ³)H Arylation. Angewandte Chemie - International Edition, 2013, 52, 4453-4456.	7.2	267
21	Introduction: CH Activation. Chemical Reviews, 2017, 117, 8481-8482.	23.0	264
22	Nickel-Catalyzed Oxidative Coupling Reactions of Two Different Terminal Alkynes Using O ₂ as the Oxidant at Room Temperature: Facile Syntheses of Unsymmetric 1,3-Diynes. Organic Letters, 2009, 11, 709-712.	2.4	245
23	Synthesis of Pyrroles by Click Reaction: Silverâ€Catalyzed Cycloaddition of Terminal Alkynes with Isocyanides. Angewandte Chemie - International Edition, 2013, 52, 6958-6961.	7.2	238
24	Is electrosynthesis always green and advantageous compared to traditional methods?. Nature Communications, 2020, 11, 802.	5.8	238
25	Copper Catalyzed Arylation/Câ°C Bond Activation: An Approach toward α-Aryl Ketones. Journal of the American Chemical Society, 2010, 132, 8273-8275.	6.6	230
26	Recent Applications of Homogeneous Catalysis in Electrochemical Organic Synthesis. CCS Chemistry, 2022, 4, 1120-1152.	4.6	225
27	Copperâ€Catalyzed Radical/Radical CH/PH Crossâ€Coupling: αâ€Phosphorylation of Aryl Ketone <i>O</i> â€Acetyloximes. Angewandte Chemie - International Edition, 2015, 54, 6604-6607.	7.2	223
28	Palladiumâ€Catalyzed Aerobic Oxidative Direct Esterification of Alcohols. Angewandte Chemie - International Edition, 2011, 50, 5144-5148.	7.2	214
29	Heteroaromatic imidazo[1,2-a]pyridines synthesis from C–H/N–H oxidative cross-coupling/cyclization. Chemical Communications, 2012, 48, 11073.	2.2	212
30	Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Chemical Society Reviews, 2021, 50, 10058-10086.	18.7	212
31	Revealing the metal-like behavior of iodine: an iodide-catalysed radical oxidative alkenylation. Chemical Communications, 2014, 50, 4496-4499.	2.2	209
32	Fe-catalysed oxidative C–H functionalization/C–S bond formation. Chemical Communications, 2012, 48, 76-78.	2.2	208
33	Cobalt-catalyzed electrooxidative C-H/N-H [4+2] annulation with ethylene or ethyne. Nature Communications, 2018, 9, 798.	5.8	203
34	Manganese-Catalyzed Oxidative Azidation of C(sp ³)â€"H Bonds under Electrophotocatalytic Conditions. Journal of the American Chemical Society, 2020, 142, 17693-17702.	6.6	200
35	Copperâ€Catalyzed Oxidative Coupling of Alkenes with Aldehydes: Direct Access to α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2013, 52, 2256-2259.	7.2	195
36	Oxidative R ¹ â€"H/R ² â€"H Cross-Coupling with Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 13128-13135.	6.6	188

#	Article	IF	Citations
37	Transmetalation of Palladium Enolate and Its Application in Palladium-Catalyzed Homocoupling of Alkynes:Â A Room-Temperature, Highly Efficient Route To Make Diynes. Journal of Organic Chemistry, 2002, 67, 1969-1971.	1.7	186
38	Iodineâ€Catalyzed Oxidative Coupling Reactions Utilizing CH and XH as Nucleophiles. Chemistry - an Asian Journal, 2015, 10, 806-823.	1.7	183
39	Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Science Bulletin, 2021, 66, 2412-2429.	4.3	183
40	1,3-Diyne chemistry: synthesis and derivations. Tetrahedron Letters, 2014, 55, 2763-2772.	0.7	181
41	"Click saccharides― novel separation materials for hydrophilic interaction liquid chromatography. Chemical Communications, 2007, , 2491-2493.	2.2	179
42	Revealing a Second Transmetalation Step in the Negishi Coupling and Its Competition with Reductive Elimination: Improvement in the Interpretation of the Mechanism of Biaryl Syntheses. Journal of the American Chemical Society, 2009, 131, 10201-10210.	6.6	179
43	Nickelâ€Catalyzed Heckâ€Type Alkenylation of Secondary and Tertiary αâ€Carbonyl Alkyl Bromides. Angewandte Chemie - International Edition, 2012, 51, 3638-3641.	7.2	178
44	Photo-induced oxidant-free oxidative C–H/N–H cross-coupling between arenes and azoles. Nature Communications, 2017, 8, 14226.	5.8	176
45	Ironâ€Catalyzed Direct Arylation of Unactivated Arenes with Aryl Halides. Angewandte Chemie - International Edition, 2010, 49, 2004-2008.	7.2	170
46	Copper-catalysed oxidative C–H/C–H coupling between olefins and simple ethers. Chemical Communications, 2014, 50, 3623.	2.2	162
47	Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click l²-cyclodextrin―stationary phase. Journal of Chromatography A, 2009, 1216, 257-263.	1.8	160
48	Isolation, Structure, and Reactivity of an Arylnickel(II) Pivalate Complex in Catalytic C–H/C–O Biaryl Coupling. Journal of the American Chemical Society, 2013, 135, 16384-16387.	6.6	160
49	Ironâ€Catalyzed Oxidative Radical Crossâ€Coupling/Cyclization between Phenols and Olefins. Angewandte Chemie - International Edition, 2013, 52, 7151-7155.	7.2	160
50	Electro-oxidative C(sp3)–H Amination of Azoles via Intermolecular Oxidative C(sp3)–H/N–H Cross-Coupling. ACS Catalysis, 2017, 7, 8320-8323.	5.5	157
51	Photocatalytic Dehydrogenative Crossâ€Coupling of Alkenes with Alcohols or Azoles without External Oxidant. Angewandte Chemie - International Edition, 2017, 56, 1120-1124.	7.2	156
52	External oxidant-free electrooxidative [3 + 2] annulation between phenol and indole derivatives. Nature Communications, 2017, 8, 775.	5.8	154
53	Investigation of an Efficient Palladium-Catalyzed C(sp)â^'C(sp) Cross-Coupling Reaction Using Phosphineâ^'Olefin Ligand: Application and Mechanistic Aspects. Journal of the American Chemical Society, 2008, 130, 14713-14720.	6.6	152
54	Transition-Metal-Assisted Radical/Radical Cross-Coupling: A New Strategy to the Oxidative C(sp ³)–H/N–H Cross-Coupling. Organic Letters, 2014, 16, 3404-3407.	2.4	152

#	Article	IF	CITATIONS
55	Roomâ€Temperature Copperâ€Catalyzed Oxidation of Electronâ€Deficient Arenes and Heteroarenes Using Air. Angewandte Chemie - International Edition, 2012, 51, 4666-4670.	7.2	151
56	Iodine-Catalyzed Radical Oxidative Annulation for the Construction of Dihydrofurans and Indolizines. Organic Letters, 2015, 17, 2404-2407.	2.4	151
57	Recent advances in iodine mediated electrochemical oxidative cross-coupling. Organic and Biomolecular Chemistry, 2018, 16, 2375-2387.	1.5	149
58	Anti-Markovnikov Oxidation of \hat{l}^2 -Alkyl Styrenes with H ₂ O as the Terminal Oxidant. Journal of the American Chemical Society, 2016, 138, 12037-12040.	6.6	148
59	Electrochemical Oxidative Câ^'H Amination of Phenols: Access to Triarylamine Derivatives. Angewandte Chemie - International Edition, 2018, 57, 4737-4741.	7.2	148
60	Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaO <i>t</i> between Elemental Sulfur and NaO <i>t</i>	2.4	147
61	Palladium atalyzed Oxidative Double CH Functionalization/Carbonylation for the Synthesis of Xanthones. Angewandte Chemie - International Edition, 2012, 51, 5204-5207.	7.2	146
62	Synthesis of 6-acyl phenanthridines by oxidative radical decarboxylation–cyclization of α-oxocarboxylates and isocyanides. Chemical Communications, 2014, 50, 2145-2147.	2.2	145
63	Solventâ€Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. Angewandte Chemie - International Edition, 2016, 55, 1094-1097.	7.2	145
64	One-shot indole-to-carbazole π-extension by a Pd–Cu–Ag trimetallic system. Chemical Science, 2013, 4, 3416.	3.7	143
65	Electroâ€Oxidative Sâ^'H/Sâ^'H Crossâ€Coupling with Hydrogen Evolution: Facile Access to Unsymmetrical Disulfides. Angewandte Chemie - International Edition, 2018, 57, 8115-8119.	7.2	143
66	Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones. Organic Letters, 2017, 19, 3131-3134.	2.4	140
67	Electrochemical-Oxidation-Induced Site-Selective Intramolecular C(sp ³)–H Amination. ACS Catalysis, 2018, 8, 9370-9375.	5.5	140
68	Highly Enantioselective Syntheses of Functionalized \hat{l} ±-Methylene- \hat{l} 3-butyrolactones via Rh(I)-catalyzed Intramolecular Alder Ene Reaction: Application to Formal Synthesis of (+)-Pilocarpine. Journal of the American Chemical Society, 2002, 124, 8198-8199.	6.6	139
69	Electrochemical Oxidative Alkoxysulfonylation of Alkenes Using Sulfonyl Hydrazines and Alcohols with Hydrogen Evolution. ACS Catalysis, 2018, 8, 10871-10875.	5.5	138
70	Palladium-Catalyzed Aerobic Oxidative Cross-Coupling Reactions of Terminal Alkynes with Alkylzinc Reagents. Journal of the American Chemical Society, 2010, 132, 4101-4103.	6.6	137
71	Oxidative Cross-Coupling through Double Transmetallation:Â Surprisingly High Selectivity for Palladium-Catalyzed Cross-Coupling of Alkylzinc and Alkynylstannanes. Journal of the American Chemical Society, 2006, 128, 15048-15049.	6.6	136
72	Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes. Journal of the American Chemical Society, 2014, 136, 924-926.	6.6	136

#	Article	IF	Citations
73	Visible light-induced direct α C–H functionalization of alcohols. Nature Communications, 2019, 10, 467.	5.8	134
74	Palladiumâ€Catalyzed Oxidative Carbonylation of <i>N</i> à€Allylamines for the Synthesis of βâ€Lactams. Angewandte Chemie - International Edition, 2014, 53, 2443-2446.	7.2	133
75	Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Alkyl Bromides: Et ₃ N as the Terminal Reductant. Organic Letters, 2016, 18, 4012-4015.	2.4	133
76	Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nature Communications, 2019, 10, 2796.	5 . 8	131
77	Aryl Halide Tolerated Electrophilic Amination of Arylboronic Acids with ⟨i⟩N⟨ i⟩ hloroamides Catalyzed by CuCl at Room Temperature. Angewandte Chemie - International Edition, 2008, 47, 6414-6417.	7.2	128
78	Transitionâ€Metalâ€Free Alkoxycarbonylation of Aryl Halides. Angewandte Chemie - International Edition, 2012, 51, 12542-12545.	7.2	128
79	Electrochemical Oxidation with Lewis-Acid Catalysis Leads to Trifluoromethylative Difunctionalization of Alkenes Using CF ₃ SO ₂ Na. Organic Letters, 2018, 20, 7396-7399.	2.4	128
80	Chloroacetateâ€Promoted Selective Oxidation of Heterobenzylic Methylenes under Copper Catalysis. Angewandte Chemie - International Edition, 2015, 54, 1261-1265.	7.2	124
81	Electrooxidative para-selective C–H/N–H cross-coupling with hydrogen evolution to synthesize triarylamine derivatives. Nature Communications, 2019, 10, 639.	5.8	123
82	Superior Effect of a Ï€-Acceptor Ligand (Phosphineâ^'Electron-Deficient Olefin Ligand) in the Negishi Coupling Involving Alkylzinc Reagents. Organic Letters, 2007, 9, 4571-4574.	2.4	122
83	An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chemical Communications, 2013, 49, 567-569.	2.2	122
84	Electrochemical Acceptorless Dehydrogenation of N-Heterocycles Utilizing TEMPO as Organo-Electrocatalyst. ACS Catalysis, 2018, 8, 1192-1196.	5 . 5	121
85	Cobalt-Catalyzed Electrochemical Oxidative C–H/N–H Carbonylation with Hydrogen Evolution. ACS Catalysis, 2018, 8, 5448-5453.	5. 5	121
86	Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution. IScience, 2019, 12, 293-303.	1.9	120
87	Palladium/Copperâ€Catalyzed Oxidative CH Alkenylation/Nâ€Dealkylative Carbonylation of Tertiary Anilines. Angewandte Chemie - International Edition, 2013, 52, 10582-10585.	7.2	119
88	Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. Chemical Communications, 2016, 52, 10407-10410.	2.2	119
89	Highly Enantioselective Cycloisomerization of Enynes Catalyzed by Rhodium for the Preparation of Functionalized Lactams. Angewandte Chemie - International Edition, 2002, 41, 4526-4529.	7.2	118
90	Markovnikovâ€Selective Radical Addition of Sâ€Nucleophiles to Terminal Alkynes through a Photoredox Process. Angewandte Chemie - International Edition, 2017, 56, 595-599.	7.2	118

#	Article	IF	CITATIONS
91	Base-Induced Mechanistic Variation in Palladium-Catalyzed Carbonylation of Aryl Iodides. Journal of the American Chemical Society, 2010, 132, 3153-3158.	6.6	117
92	Highly Enantioselective Asymmetric Hydrogenation of α-Phthalimide Ketone: An Efficient Entry to Enantiomerically Pure Amino Alcohols. Journal of the American Chemical Society, 2004, 126, 1626-1627.	6.6	116
93	Electrochemical intramolecular dehydrogenative C–S bond formation for the synthesis of benzothiazoles. Green Chemistry, 2017, 19, 2092-2095.	4.6	116
94	Electrochemical Aminoselenation and Oxyselenation of Styrenes with Hydrogen Evolution. Organic Letters, 2019, 21, 1297-1300.	2.4	116
95	Mn-Catalyzed Electrochemical Radical Cascade Cyclization toward the Synthesis of Benzo[4,5]imidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-one Derivatives. ACS Catalysis, 2020, 10, 6676-6681.	5.5	115
96	Electrochemical oxidative oxysulfenylation and aminosulfenylation of alkenes with hydrogen evolution. Science Advances, 2018, 4, eaat5312.	4.7	114
97	Covalently Bound Benzyl Ligand Promotes Selective Palladiumâ€Catalyzed Oxidative Esterification of Aldehydes with Alcohols. Angewandte Chemie - International Edition, 2012, 51, 5662-5666.	7.2	113
98	A novel highly regio- and diastereoselective haloamination of alkenes catalyzed by divalent palladium. Tetrahedron Letters, 2004, 45, 1785-1788.	0.7	109
99	Arylation of unactivated arenes. Dalton Transactions, 2010, 39, 10352.	1.6	109
100	Visibleâ€Light Photocatalytic Radical Alkenylation of αâ€Carbonyl Alkyl Bromides and Benzyl Bromides. Chemistry - A European Journal, 2013, 19, 5120-5126.	1.7	109
101	Tuning radical reactivity using iodine in oxidative C(sp ³)â€"H/C(sp)â€"H cross-coupling: an easy way toward the synthesis of furans and indolizines. Chemical Communications, 2015, 51, 8769-8772.	2.2	109
102	From Anilines to Isatins: Oxidative Palladiumâ€Catalyzed Double Carbonylation of CH Bonds. Angewandte Chemie - International Edition, 2015, 54, 1893-1896.	7.2	109
103	Construction of N-containing heterocycles via oxidative intramolecular N–H/X–H coupling. Chemical Communications, 2015, 51, 1394-1409.	2.2	109
104	Palladiumâ€Catalyzed Regioselective Aerobic Oxidative CH/NH Carbonylation of Heteroarenes under Baseâ€Free Conditions. Chemistry - A European Journal, 2011, 17, 9581-9585.	1.7	108
105	Evidence for the interaction between $\langle \sup t < \sup BuOK $ and 1,10-phenanthroline to form the 1,10-phenanthroline radical anion: a key step for the activation of aryl bromides by electron transfer. Chemical Communications, 2015, 51, 545-548.	2.2	108
106	Click chemistry: a new facile and efficient strategy for preparation of functionalized HPLC packings. Chemical Communications, 2006, , 4512.	2.2	105
107	Visible light mediated efficient oxidative benzylic sp ³ Câ€"H to ketone derivatives obtained under mild conditions using O ₂ . Chemical Communications, 2015, 51, 14046-14049.	2.2	103
108	Multimetallic catalysed radical oxidative C(sp3)â€"H/C(sp)â€"H cross-coupling between unactivated alkanes and terminal alkynes. Nature Communications, 2016, 7, 11676.	5.8	103

#	Article	IF	Citations
109	Electrocatalytic intramolecular oxidative annulation of N-aryl enamines into substituted indoles mediated by iodides. Chemical Communications, 2017, 53, 3354-3356.	2.2	103
110	Electrochemical oxidative Câ€"H/Nâ€"H cross-coupling for Câ€"N bond formation with hydrogen evolution. Chemical Communications, 2019, 55, 1809-1812.	2.2	103
111	Ni-Catalyzed Mild Arylation of \hat{l}_{\pm} -Halocarbonyl Compounds with Arylboronic Acids. Organic Letters, 2007, 9, 5601-5604.	2.4	102
112	Relay cooperation of K ₂ S ₂ O ₈ and O ₂ in oxytrifluoromethylation of alkenes using CF ₃ SO ₂ Na. Chemical Communications, 2014, 50, 14101-14104.	2.2	101
113	Selective Oxidative [4+2] Imine/Alkene Annulation with H ₂ Liberation Induced by Photoâ€Oxidation. Angewandte Chemie - International Edition, 2018, 57, 1286-1290.	7.2	101
114	Visibleâ€Lightâ€Mediated Oxygenation Reactions using Molecular Oxygen. Asian Journal of Organic Chemistry, 2017, 6, 386-396.	1.3	100
115	Highly Enantioselective Rh-Catalyzed Intramolecular Alder–Ene Reactions for the Syntheses of Chiral Tetrahydrofurans. Angewandte Chemie - International Edition, 2002, 41, 3457-3460.	7.2	99
116	Oxidative cross-coupling/cyclization to build polysubstituted pyrroles from terminal alkynes and \hat{l}^2 -enamino esters. Chemical Communications, 2013, 49, 7549.	2.2	99
117	Cu(II)–Cu(I) Synergistic Cooperation to Lead the Alkyne C–H Activation. Journal of the American Chemical Society, 2014, 136, 16760-16763.	6.6	97
118	Direct oxidative esterification of alcohols. Dalton Transactions, 2014, 43, 13460-13470.	1.6	95
119	Cobalt-Catalyzed Intramolecular Oxidative C(sp ³)–H/N–H Carbonylation of Aliphatic Amides. Organic Letters, 2017, 19, 2170-2173.	2.4	95
120	Mottâ€"Schottky Effect Leads to Alkyne Semihydrogenation over Pd-Nanocube@N-Doped Carbon. ACS Catalysis, 2019, 9, 4632-4641.	5.5	93
121	A novel palladium-catalyzed homocoupling reaction initiated by transmetallation of palladium enolates. Tetrahedron Letters, 2002, 43, 2525-2528.	0.7	91
122	Palladium-Catalyzed Oxidative Carbonylation of Alkyl and Aryl Indium Reagents with CO under Mild Conditions. Journal of the American Chemical Society, 2008, 130, 9429-9433.	6.6	91
123	Cobaltâ€Catalyzed Direct Arylation of Unactivated Arenes with Aryl Halides. Chemistry - A European Journal, 2011, 17, 3588-3592.	1.7	91
124	Palladium(II)-Catalyzed Tandem Intramolecular Aminopalladation of Alkynes and Conjugate Addition. Synthesis of Oxazolidinones, Imidazolidinones, and Lactams. Organic Letters, 2000, 2, 2699-2702.	2.4	89
125	Visible-Light-Induced C(sp ³)â€"H Oxidative Arylation with Heteroarenes. Organic Letters, 2019, 21, 2441-2444.	2.4	89
126	Palladium atalyzed Aerobic Oxidative Carbonylation of Arylboronate Esters under Mild Conditions. Angewandte Chemie - International Edition, 2010, 49, 3371-3374.	7.2	88

#	Article	IF	Citations
127	Catalyst-free N-methylation of amines using CO ₂ . Chemical Communications, 2017, 53, 1148-1151.	2.2	88
128	Asymmetric Hydrogenation of Pyridines: Enantioselective Synthesis of Nipecotic Acid Derivatives. European Journal of Organic Chemistry, 2006, 2006, 4343-4347.	1.2	85
129	Preparation of novel \hat{l}^2 -cyclodextrin chiral stationary phase based on click chemistry. Journal of Chromatography A, 2008, 1191, 188-192.	1.8	85
130	Visible Lightâ€Induced γâ€Alkoxynitrile Synthesis <i>via</i> Threeâ€Component Alkoxycyanomethylation of Alkenes. Advanced Synthesis and Catalysis, 2014, 356, 2873-2877.	2.1	85
131	Nickel-Catalyzed Aromatic C–H Alkylation with Secondary or Tertiary Alkyl–Bromine Bonds for the Construction of Indolones. Organic Letters, 2013, 15, 6166-6169.	2.4	83
132	Exogenous-oxidant-free electrochemical oxidative C–H sulfonylation of arenes/heteroarenes with hydrogen evolution. Chemical Communications, 2018, 54, 11471-11474.	2.2	81
133	Electrooxidation enables highly regioselective dearomative annulation of indole and benzofuran derivatives. Nature Communications, 2020, 11 , 3 .	5.8	81
134	Visible-Light-Mediated Anti-Markovnikov Hydration of Olefins. ACS Catalysis, 2017, 7, 1432-1437.	5.5	80
135	Oxidative [4+2] annulation of styrenes with alkynes under external-oxidant-free conditions. Nature Communications, 2018, 9, 1225.	5.8	79
136	Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chemical Science, 2019, 10, 7982-7987.	3.7	79
137	Exogenous-oxidant-free electrochemical oxidative C–H phosphonylation with hydrogen evolution. Chemical Communications, 2019, 55, 4230-4233.	2.2	79
138	Labile Cu(I) Catalyst/Spectator Cu(II) Species in Copper-Catalyzed C–C Coupling Reaction: Operando IR, in Situ XANES/EXAFS Evidence and Kinetic Investigations. Journal of the American Chemical Society, 2013, 135, 488-493.	6.6	78
139	Radical–Radical Cross-Coupling for C–S Bond Formation. Organic Letters, 2016, 18, 2351-2354.	2.4	78
140	Visible-Light-Induced External Oxidant-Free Oxidative Phosphonylation of C(sp ²)–H Bonds. ACS Catalysis, 2017, 7, 7412-7416.	5.5	78
141	Efficient Synthesis of Chiral βâ€Arylisopropylamines by Using Catalytic Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2009, 48, 800-802.	7.2	77
142	Revelation of the Difference between Arylzinc Reagents Prepared from Aryl Grignard and Aryllithium Reagents Respectively: Kinetic and Structural Features. Journal of the American Chemical Society, 2009, 131, 16656-16657.	6.6	77
143	I2-catalyzed oxidative C(sp3)–H/S–H coupling: utilizing alkanes and mercaptans as the nucleophiles. Chemical Communications, 2014, 50, 14386-14389.	2.2	76
144	Nickel-Catalyzed Selective Oxidative Radical Cross-Coupling: AnÂEffective Strategy for Inert Csp ³ â€"H Functionalization. Organic Letters, 2015, 17, 998-1001.	2.4	76

#	Article	IF	Citations
145	Visible-light-mediated C2-amination of thiophenes by using DDQ as an organophotocatalyst. Chemical Communications, 2017, 53, 3689-3692.	2.2	7 5
146	Electrochemical oxidative aminocarbonylation of terminal alkynes. Nature Catalysis, 2020, 3, 438-445.	16.1	75
147	Z-Selective Addition of Diaryl Phosphine Oxides to Alkynes via Photoredox Catalysis. ACS Catalysis, 2018, 8, 10599-10605.	5.5	74
148	Visible light mediated aerobic radical C–H phosphorization toward arylphosphonates. Organic Chemistry Frontiers, 2016, 3, 749-752.	2.3	73
149	Aerobic Copper-Promoted Radical-Type Cleavage of Coordinated Cyanide Anion: Nitrogen Transfer to Aldehydes To Form Nitriles. Journal of the American Chemical Society, 2016, 138, 2885-2888.	6.6	7 3
150	Electrochemical oxidative C–H/S–H cross-coupling between enamines and thiophenols with H ₂ evolution. Chemical Science, 2019, 10, 2791-2795.	3.7	73
151	Electrochemical oxidation induced intermolecular aromatic C-H imidation. Nature Communications, 2019, 10, 5467.	5.8	73
152	NMP and O $<$ sub $>$ 2 $<$ /sub $>$ as Radical Initiator: Trifluoromethylation of Alkenes to Tertiary \hat{I}^2 -Trifluoromethyl Alcohols at Room Temperature. Organic Letters, 2015, 17, 6034-6037.	2.4	72
153	Electrochemical Oxidative Aryl(alkyl)trifluoromethylation of Allyl Alcohols via 1,2-Migration. Organic Letters, 2019, 21, 4619-4622.	2.4	72
154	Electrochemical oxidative cyclization of olefinic carbonyls with diselenides. Green Chemistry, 2019, 21, 4976-4980.	4.6	71
155	Multi-Metal-Catalyzed Oxidative Radical Alkynylation with Terminal Alkynes: A New Strategy for C(sp ³)–C(sp) Bond Formation. Journal of the American Chemical Society, 2018, 140, 6006-6013.	6.6	70
156	Silver-Mediated Selective Oxidative Cross-Coupling between Câ€"H/Pâ€"H: A Strategy to Construct Alkynyl(diaryl)phosphine Oxide. Organic Letters, 2015, 17, 118-121.	2.4	69
157	Synergistic Pd/Enamine Catalysis: A Strategy for the C–H/C–H Oxidative Coupling of Allylarenes with Unactivated Ketones. Organic Letters, 2014, 16, 3584-3587.	2.4	68
158	Oxidant controlled Pd-catalysed selective oxidation of primary alcohols. Chemical Communications, 2013, 49, 1324.	2.2	67
159	(E)- \hat{l} ±, \hat{l} 2-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation. Chemical Communications, 2015, 51, 3247-3250.	2.2	67
160	Visible-Light Mediated Oxidative C–H/N–H Cross-Coupling between Tetrahydrofuran and Azoles Using Air. Journal of Organic Chemistry, 2017, 82, 10704-10709.	1.7	67
161	Ni-Catalyzed enantioselective reductive aryl-alkenylation of alkenes: application to the synthesis of (+)-physovenine and (+)-physostigmine. Organic Chemistry Frontiers, 2019, 6, 3305-3309.	2.3	67
162	Palladiumâ€Catalyzed CC Bond Formation To Construct 1,4â€Diketones under Mild Conditions. Angewandte Chemie - International Edition, 2011, 50, 7337-7341.	7.2	66

#	Article	IF	CITATIONS
163	Fe-Catalysed oxidative C–H/N–H coupling between aldehydes and simple amides. Chemical Communications, 2014, 50, 4736.	2.2	66
164	Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations. ACS Catalysis, 2015, 5, 3752-3759.	5.5	66
165	Electrochemical oxidative [4 + 2] annulation of tertiary anilines and alkenes for the synthesis of tetrahydroquinolines. Green Chemistry, 2018, 20, 4870-4874.	4.6	66
166	Palladium-catalysed aerobic oxidative Heck-type alkenylation of Csp3â€"H for pyrrole synthesis. Chemical Communications, 2013, 49, 5853.	2.2	65
167	Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis. Chemical Science, 2015, 6, 4851-4854.	3.7	65
168	Electrochemical Oxidative Câ€"H Sulfenylation of Imidazopyridines with Hydrogen Evolution. Chinese Journal of Chemistry, 2019, 37, 49-52.	2.6	65
169	Visible-Light-Induced Acetalization of Aldehydes with Alcohols. Organic Letters, 2017, 19, 122-125.	2.4	64
170	Oxidationâ€Induced Câ€"H Functionalization: A Formal Way for Câ€"H Activation. Chinese Journal of Chemistry, 2018, 36, 692-697.	2.6	64
171	Tuning radical reactivity for selective radical/radical cross-coupling. Science Bulletin, 2018, 63, 1006-1009.	4.3	64
172	Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N <i>-</i> Centered Radicals in an Electrochemical C(sp ³)–H Arylation Reaction. Journal of the American Chemical Society, 2021, 143, 20863-20872.	6.6	64
173	Synergistic Catalysis in the Sonogashira Coupling Reaction: Quantitative Kinetic Investigation of Transmetalation. Angewandte Chemie - International Edition, 2013, 52, 1527-1530.	7.2	63
174	Aerobic Oxidative Carbonylation of Enamides by Merging Palladium with Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7088-7092.	1.7	63
175	Facile and Economical Electrochemical Dehalogenative Deuteration of (Hetero)Aryl Halides. CCS Chemistry, 2021, 3, 2669-2675.	4.6	63
176	Rh-Catalyzed Kinetic Resolution of Enynes and Highly Enantioselective Formation of 4-Alkenyl-2,3-disubstituted Tetrahydrofurans. Journal of the American Chemical Society, 2003, 125, 11472-11473.	6.6	62
177	Pincer Thioamide and Pincer Thioimide Palladium Complexes Catalyze Highly Efficient Negishi Coupling of Primary and Secondary Alkyl Zinc Reagents at Room Temperature. Chemistry - A European Journal, 2009, 15, 1499-1507.	1.7	62
178	Electrocatalytic Oxidantâ€Free Dehydrogenative Câ^'H/Sâ^'H Crossâ€Coupling. Angewandte Chemie, 2017, 129, 3055-3059.	1.6	62
179	Visible light-mediated oxidative C(sp ³)–H phosphonylation for α-aminophosphonates under oxidant-free conditions. Chemical Communications, 2018, 54, 1659-1662.	2.2	62
180	CO/Câ€H as an Acylating Reagent: A Palladiumâ€Catalyzed Aerobic Oxidative Carbonylative Esterification of Alcohols. Angewandte Chemie - International Edition, 2014, 53, 5657-5661.	7.2	61

#	Article	lF	Citations
181	Copper-catalysed oxidative Csp ³ â€"H methylenation to terminal olefins using DMF. Chemical Communications, 2014, 50, 7636-7638.	2.2	61
182	Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angewandte Chemie - International Edition, 2020, 59, 7193-7197.	7.2	61
183	Electrochemical Oxidation Enables Regioselective and Scalable α-C(sp ³)-H Acyloxylation of Sulfides. Journal of the American Chemical Society, 2021, 143, 3628-3637.	6.6	61
184	Efficient Synthesis of 1,2,3â€Triazoles by Copperâ€Mediated CN and NN Bond Formation Starting From <i>N</i> à€Tosylhydrazones and Amines. Chemistry - A European Journal, 2014, 20, 13692-13697.	1.7	60
185	Aerobic C–N bond activation: a simple strategy to construct pyridines and quinolines. Chemical Communications, 2015, 51, 2286-2289.	2.2	60
186	DDQ-Catalyzed Direct C(sp ³)â€"H Amination of Alkylheteroarenes: Synthesis of Biheteroarenes under Aerobic and Metal-Free Conditions. ACS Catalysis, 2018, 8, 2195-2199.	5 . 5	60
187	Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24715-24724.	4.0	60
188	Efficient Fe-catalyzed homo-coupling of aryl Grignard reagents using O2 as the oxidant. Tetrahedron Letters, 2008, 49, 610-613.	0.7	59
189	Dioxygen-induced oxidative activation of a Pâ \in "H bond: radical oxyphosphorylation of alkenes and alkynes toward \hat{l}^2 -oxy phosphonates. Chemical Communications, 2016, 52, 12338-12341.	2.2	59
190	Synergy of Anodic Oxidation and Cathodic Reduction Leads to Electrochemical C—H Halogenation. Chinese Journal of Chemistry, 2019, 37, 611-615.	2.6	59
191	Palladium(iv) chemistry supported by pincer type ligands. Dalton Transactions, 2011, 40, 8745.	1.6	58
192	Photoinduced oxidative activation of electron-rich arenes: alkenylation with H ₂ evolution under external oxidant-free conditions. Chemical Science, 2018, 9, 1521-1526.	3.7	58
193	Identification of a Highly Efficient Alkylated Pincer Thioimido–Palladium(II) Complex as the Active Catalyst in Negishi Coupling. Chemistry - A European Journal, 2009, 15, 4437-4445.	1.7	57
194	Pdâ€Catalyzed Direct and Selective CH Functionalization: C3â€Acetoxylation of Indoles. Chemistry - A European Journal, 2011, 17, 2353-2357.	1.7	57
195	A Facile Highly Regio- and Stereoselective Preparation of N-Tosyl Allylic Amines from Allylic Alcohols and Tosyl Isocyanate via Palladium(II)-Catalyzed Aminopalladationâ $^{\circ}$ Î ² -Heteroatom Elimination. Organic Letters, 2000, 2, 2357-2360.	2.4	56
196	Carbon entered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations. Chemistry - A European Journal, 2014, 20, 15605-15610.	1.7	56
197	The synergistic effect of self-assembly and visible-light induced the oxidative C–H acylation of N-heterocyclic aromatic compounds with aldehydes. Chemical Communications, 2018, 54, 5744-5747.	2.2	56
198	Scalable and selective deuteration of (hetero)arenes. Nature Chemistry, 2022, 14, 334-341.	6.6	56

#	Article	IF	Citations
199	Recent Advances in Electrochemical Oxidative Crossâ€Coupling of Alkenes with H ₂ Evolution. ChemCatChem, 2020, 12, 27-40.	1.8	55
200	Palladium-Catalyzed Electro-oxidative C–H Amination toward the Synthesis of Pyrido[1,2- <i>a</i>)benzimidazoles with Hydrogen Evolution. ACS Catalysis, 2020, 10, 3828-3831.	5.5	55
201	Palladium-Catalyzed Homocoupling Reactions between Two Csp3â^'Csp3 Centers. Organic Letters, 2002, 4, 2285-2288.	2.4	54
202	Effective Pd-Nanoparticle (PdNP)-Catalyzed Negishi Coupling Involving Alkylzinc Reagents at Room Temperature. Organic Letters, 2008, 10, 2661-2664.	2.4	54
203	Palladium/Copper Co-catalyzed Oxidative C–H/C–H Carbonylation of Diphenylamines: A Way To Access Acridones. Organic Letters, 2017, 19, 94-97.	2.4	54
204	Electrochemical Arylation of Electronâ€Deficient Arenes through Reductive Activation. Angewandte Chemie - International Edition, 2019, 58, 15747-15751.	7.2	54
205	Electrochemical Câ^C bond cleavage of cyclopropanes towards the synthesis of 1,3-difunctionalized molecules. Nature Communications, 2021, 12, 3075.	5.8	54
206	Electrochemical Palladium-Catalyzed Oxidative Sonogashira Carbonylation of Arylhydrazines and Alkynes to Ynones. Journal of the American Chemical Society, 2021, 143, 12460-12466.	6.6	54
207	Efficient Preparation of Functionalized (E,Z) Dienes Using Acetylene as the Building Block. Journal of Organic Chemistry, 1998, 63, 3806-3807.	1.7	53
208	Acceleration of Reductive Elimination of [Arâ€Pd] by a Phosphine/Electronâ€Deficient Olefin Ligand: A Kinetic Investigation. Chemistry - A European Journal, 2009, 15, 3823-3829.	1.7	53
209	Catalyst-free electrochemical decarboxylative cross-coupling of <i>N</i> -hydroxyphthalimide esters and N-heteroarenes towards C(sp ³)–C(sp ²) bond formation. Chemical Communications, 2019, 55, 14922-14925.	2.2	53
210	External Oxidantâ€Free Regioselective Cross Dehydrogenative Coupling of 2â€Arylimidazoheterocycles and Azoles with H ₂ Evolution via Photoredox Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 3220-3227.	2.1	52
211	Nickelâ€Catalyzed Reductive Cyclization of Unactivated 1,6â€Enynes in the Presence of Organozinc Reagents. Angewandte Chemie - International Edition, 2008, 47, 2279-2282.	7.2	51
212	Rational Design of a Palladiumâ€Catalyzed C _{sp} â€"C _{sp} Crossâ€Coupling Reaction Inspired by Kinetic Studies. Angewandte Chemie - International Edition, 2012, 51, 9547-9551.	7.2	51
213	lron-Catalyzed Oxidative C–H/C–H Cross-Coupling between Electron-Rich Arenes and Alkenes. Organic Letters, 2015, 17, 2174-2177.	2.4	51
214	Electrochemical oxidation-induced etherification via C(sp ³)─H/O─H cross-coupling. Science Advances, 2020, 6, eaaz0590.	4.7	51
215	Copper-/Cobalt-Catalyzed Highly Selective Radical Dioxygenation of Alkenes. Organic Letters, 2015, 17, 3402-3405.	2.4	50
216	Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl Compounds. Organometallics, 2017, 36, 3921-3930.	1.1	50

#	Article	IF	CITATIONS
217	Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds. Synlett, 2019, 30, 1149-1163.	1.0	50
218	Transmetalation is the Rate-Limiting Step: Quantitative Kinetic Investigation of Nickel-Catalyzed Oxidative Coupling of Arylzinc Reagents. Journal of the American Chemical Society, 2010, 132, 9607-9609.	6.6	49
219	DDQâ€Catalyzed Oxidative CO Coupling Of sp ³ CH Bonds With Carboxylic Acids. ChemSusChem, 2012, 5, 2143-2146.	3.6	49
220	Oxidative cross S–H/S–H coupling: selective synthesis of unsymmetrical aryl tert-alkyl disulfanes. Organic Chemistry Frontiers, 2015, 2, 677-680.	2.3	49
221	Copperâ€Catalyzed Radical Carbooxygenation: Alkylation and Alkoxylation of Styrenes. Chemistry - an Asian Journal, 2015, 10, 96-99.	1.7	49
222	Regio- and Stereoselective Oxysulfonylation of Allenes. Organic Letters, 2016, 18, 3940-3943.	2.4	49
223	Visible-light induced oxidative Csp ³ –H activation of methyl aromatics to methyl esters. Green Chemistry, 2016, 18, 5122-5126.	4.6	49
224	Exogenous-oxidant- and catalyst-free electrochemical deoxygenative C2 sulfonylation of quinoline <i>N</i> -oxides. Chemical Communications, 2019, 55, 13852-13855.	2.2	49
225	Highly Selective Palladiumâ€Catalyzed Oxidative C <i>sp</i> ² C <i>sp</i> ³ Crossâ€Coupling of Arylzinc and Alkylindium Reagents through Double Transmetallation. Advanced Synthesis and Catalysis, 2009, 351, 630-634.	2.1	48
226	Spectroscopic observation of iodosylarene metalloporphyrin adducts and manganese(V)-oxo porphyrin species in a cytochrome P450 analogue. Nature Communications, 2012, 3, 1190.	5.8	48
227	Easy access to enamides: a mild nickel-catalysed alkene isomerization of allylamides. Chemical Communications, 2013, 49, 7923.	2.2	48
228	Mn-Catalyzed Electrooxidative Undirected C–H/P–H Cross-Coupling between Aromatics and Diphenyl Phosphine Oxides. ACS Catalysis, 2021, 11, 4295-4300.	5 . 5	48
229	Zincâ€Catalyzed Dehydrogenative Crossâ€Coupling of Terminal Alkynes with Aldehydes: Access to Ynones. Angewandte Chemie - International Edition, 2015, 54, 15850-15853.	7.2	47
230	Carbonâ€Centered Radical Addition to C=X Bonds for Câ^'X Bond Formation. Chemistry - an Asian Journal, 2015, 10, 2040-2054.	1.7	47
231	Catalystâ€Free Difunctionalization of Activated Alkenes in Water: Efficient Synthesis of βâ€Keto Sulfides and Sulfones. Chemistry - A European Journal, 2016, 22, 14489-14493.	1.7	47
232	Electrochemical oxidative C(sp ³)â€"H azolation of lactams under mild conditions. Green Chemistry, 2020, 22, 3742-3747.	4.6	47
233	A trans diacyloxylation of indoles. Chemical Communications, 2012, 48, 3239.	2.2	46
234	Electrochemical Oxidative [4+2] Annulation for the Ï€â€Extension of Unfunctionalized Heterobiaryl Compounds. Angewandte Chemie - International Edition, 2020, 59, 15238-15243.	7.2	46

#	Article	IF	Citations
235	Electrochemical Radical Selenylation of Alkenes and Arenes via Se–Se Bond Activation. Organic Letters, 2021, 23, 7724-7729.	2.4	46
236	Enantioselective syntheses of 3,4,5-trisubstituted \hat{I}^3 -lactones: formal synthesis of (\hat{a}^2)-blastmycinolactol. Tetrahedron Letters, 2005, 46, 1823-1826.	0.7	45
237	Nickelâ€Catalyzed Oxidative Câ^'H/Nâ^'H Isocyanide Insertion: An Efficient Synthesis of Iminoisoindolinone Derivatives. Chemistry - an Asian Journal, 2016, 11, 1664-1667.	1.7	45
238	Kinetics of (Porphyrin)manganese(III)-Catalyzed Olefin Epoxidation with a Soluble lodosylbenzene Derivative. European Journal of Organic Chemistry, 2006, 2006, 2707-2714.	1.2	44
239	Nickel-catalysed novel β,γ-unsaturated nitrile synthesis. Chemical Communications, 2013, 49, 2442.	2.2	44
240	External Oxidant-Free Dehydrogenative Lactonization of 2-Arylbenzoic Acids via Visible-Light Photocatalysis. Journal of Organic Chemistry, 2018, 83, 3582-3589.	1.7	44
241	Cobalt catalyzed electrochemical $[4 + 2]$ annulation for the synthesis of sultams. Green Chemistry, 2020, 22, 1548-1552.	4.6	44
242	Palladium(II)-Catalyzed Highly Regio- and Diastereoselective Cyclization of Difunctional AllylicN-Tosylcarbamates. A Convenient Synthesis of Optically Active 4-Vinyl-2-oxazolidinones and Total Synthesis of 1,4-Dideoxy-1,4-imino-l-xylitol. Journal of Organic Chemistry, 2002, 67, 974-980.	1.7	43
243	n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials. Electrochimica Acta, 2012, 78, 27-31.	2.6	43
244	X-ray Absorption and Electron Paramagnetic Resonance Guided Discovery of the Cu-Catalyzed Synthesis of Multiaryl-Substituted Furans from Aryl Styrene and Ketones Using DMSO as the Oxidant. Organic Letters, 2017, 19, 2330-2333.	2.4	43
245	CX (X=Br, I) Bondâ€Tolerant Aerobic Oxidative Cross―Coupling: A Strategy to Selectively Construct βâ€Aryl Ketones and Aldehydes. Advanced Synthesis and Catalysis, 2012, 354, 341-346.	2.1	42
246	Copper-catalysed direct radical alkenylation of alkyl bromides. Organic and Biomolecular Chemistry, 2014, 12, 6790-6793.	1.5	42
247	Palladium/Copper-Catalyzed Aerobic Oxidative C–H Carbonylation for the Synthesis of <i>>o</i> -Aminobenzoates. Organic Letters, 2015, 17, 1397-1400.	2.4	42
248	Mechanism of Synergistic Cu(II)/Cu(I)-Mediated Alkyne Coupling: Dinuclear 1,2-Reductive Elimination after Minimum Energy Crossing Point. Journal of Organic Chemistry, 2016, 81, 1654-1660.	1.7	42
249	Electrochemical Oxidative Câ^H Amination of Phenols: Access to Triarylamine Derivatives. Angewandte Chemie, 2018, 130, 4827-4831.	1.6	42
250	Size-controllable ultrafine palladium nanoparticles immobilized on calcined chitin microspheres as efficient and recyclable catalysts for hydrogenation. Nanoscale, 2018, 10, 14719-14725.	2.8	42
251	Electroâ€Oxidative Sâ^H/Sâ^H Crossâ€Coupling with Hydrogen Evolution: Facile Access to Unsymmetrical Disulfides. Angewandte Chemie, 2018, 130, 8247-8251.	1.6	42

Novel reversed-phase high-performance liquid chromatography stationary phase with oligo (ethylene) Tj ETQq0 0 0 0 $\underset{1.8}{\text{rgBT}}$ /Overlock 10 Tf

15

252

#	Article	IF	CITATION
253	C8â€"H bond activation vs. C2â€"H bond activation: from naphthyl amines to lactams. Chemical Communications, 2016, 52, 13307-13310.	2.2	41
254	CO/O ₂ assisted oxidative carbonâ€"carbon and carbonâ€"heteroatom bond cleavage for the synthesis of oxosulfonates from DMSO and olefins. Chemical Science, 2017, 8, 2175-2178.	3.7	41
255	Photocatalytic Dehydrogenative Crossâ€Coupling of Alkenes with Alcohols or Azoles without External Oxidant. Angewandte Chemie, 2017, 129, 1140-1144.	1.6	41
256	Visibleâ€Lightâ€Induced Câ^'H Functionalization and Câ^'C/Câ^'X Bondâ€Forming Oxidative Crossâ€Coupling Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1164-1177.	1.3	41
257	Oxidation-Induced β-Selective C–H Bond Functionalization: Thiolation and Selenation of N-Heterocycles. ACS Catalysis, 2019, 9, 1888-1894.	5.5	41
258	Advances in visible light-mediated oxidative coupling reactions. Chinese Journal of Catalysis, 2015, 36, 1428-1439.	6.9	40
259	Electrochemical oxidative thiocyanation and amination of enaminones towards the synthesis of multi-substituted alkenes. Green Chemistry, 2021, 23, 763-766.	4.6	40
260	Bimetallic zinc complex – active species in coupling of terminal alkynes with aldehydes via nucleophilic addition/Oppenauer oxidation. Chemical Communications, 2015, 51, 576-579.	2.2	39
261	Title is missing!. Angewandte Chemie, 2002, 114, 3607-3610.	1.6	38
262	What is the Rate of the Csp ² â^'Csp ² Reductive Elimination Step? Revealing an Unusually Fast Ni-Catalyzed Negishi-Type Oxidative Coupling Reaction. Journal of the American Chemical Society, 2009, 131, 9892-9893.	6.6	38
263	Transition-metal-free aerobic oxidation of primary alcohols to carboxylic acids. New Journal of Chemistry, 2013, 37, 1700.	1.4	38
264	Copperâ€Catalyzed Trifluoromethylationâ€Initiated Radical Oxidative Annulation toward Oxindoles. Asian Journal of Organic Chemistry, 2014, 3, 273-276.	1.3	38
265	Autoinductive thiolation/oxygenation of alkenes at room temperature. Organic Chemistry Frontiers, 2015, 2, 908-912.	2.3	38
266	Selective Photoredox Trifluoromethylation of Tryptophanâ€Containing Peptides. European Journal of Organic Chemistry, 2019, 2019, 7596-7605.	1.2	38
267	O ₂ -mediated C(sp ²)â€"X bond oxygenation: autoxidative carbonâ€"heteroatom bond formation using activated alkenes as a linkage. RSC Advances, 2015, 5, 24494-24498.	1.7	37
268	lodine-catalyzed C–H/S–H oxidative coupling: from 1,3-diketones and thiophenols to β-dicarbonyl thioethers. RSC Advances, 2015, 5, 41493-41496.	1.7	37
269	From Ketones, Amines, and Carbon Monoxide to 4-Quinolones: Palladium-Catalyzed Oxidative Carbonylation. Organic Letters, 2017, 19, 6432-6435.	2.4	37
270	Electrochemical Dearomative Halocyclization of Tryptamine and Tryptophol Derivatives. Chinese Journal of Chemistry, 2020, 38, 1070-1074.	2.6	37

#	Article	IF	CITATIONS
271	Electrochemical Intramolecular Câ€"H/Oâ€"H Cross oupling of 2â€Arylbenzoic Acids. Chinese Journal of Chemistry, 2018, 36, 619-624.	2.6	36
272	Title is missing!. Angewandte Chemie, 2002, 114, 4708-4711.	1.6	35
273	Evidence of Cu ^I /Cu ^{II} Redox Process by Xâ€ray Absorption and EPR Spectroscopy: Direct Synthesis of Dihydrofurans from βâ€Ketocarbonyl Derivatives and Olefins. Chemistry - A European Journal, 2015, 21, 18925-18929.	1.7	35
274	Acid-Promoted Cross-Dehydrative Aromatization for the Synthesis of Tetraaryl-Substituted Pyrroles. Organic Letters, 2016, 18, 56-59.	2.4	35
275	Synergy of anodic oxidation and cathodic reduction leads to electrochemical deoxygenative C2 arylation of quinoline <i>N</i> -oxides. Chemical Communications, 2019, 55, 11091-11094.	2.2	35
276	Electrochemical Oxidation Dearomatization of Anisol Derivatives toward Spiropyrrolidines and Spirolactones. CCS Chemistry, 2022, 4, 1199-1207.	4.6	35
277	Organozinc pivalates for cobalt-catalyzed difluoroalkylarylation of alkenes. Nature Communications, 2021, 12, 4366.	5.8	35
278	Zinc Chloride Enhanced Arylations of Secondary Benzyl Trifluoroacetates in the Presence of βâ€Hydrogen Atoms. Angewandte Chemie - International Edition, 2010, 49, 6387-6390.	7.2	34
279	Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling. Scientific Reports, 2015, 5, 15934.	1.6	34
280	Synthesis of oxazoles by silver catalysed oxidative decarboxylation–cyclization of α-oxocarboxylates and isocyanides. Chemical Communications, 2015, 51, 10524-10527.	2.2	34
281	Pd(OAc) ₂ /Sî€PPh ₃ accelerated activation of gem-dichloroalkenes for the construction of 3-arylchromones. Chemical Communications, 2015, 51, 17576-17579.	2.2	34
282	Pd/Cu-Catalyzed aerobic oxidative aromatic Câ€"H bond activation/N-dealkylative carbonylation towards the synthesis of phenanthridinones. Chemical Communications, 2017, 53, 1908-1911.	2.2	34
283	Coordination strategy-induced selective C–H amination of 8-aminoquinolines. Chemical Communications, 2017, 53, 6736-6739.	2.2	34
284	Electrochemical oxidative radical cascade cyclization of olefinic amides and thiophenols towards the synthesis of sulfurated benzoxazines, oxazolines and iminoisobenzofurans. Green Chemistry, 2021, 23, 7982-7986.	4.6	34
285	Symbiotic Catalysis Relay: Molecular Oxygen Activation Catalyzed by Multiple Small Molecules at Ambient Temperature and its Mechanism. ChemCatChem, 2012, 4, 76-80.	1.8	33
286	Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input. Communications Chemistry, 2020, 3, .	2.0	33
287	Regioselective/electro-oxidative intermolecular $[3 + 2]$ annulation for the preparation of indolines. Chemical Science, 2020, 11, 2181-2186.	3.7	33
288	Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts. Nano Research, 2018, 11, 3145-3153.	5.8	32

#	Article	IF	Citations
289	Electrochemical oxidative annulation of amines and aldehydes or ketones to synthesize polysubstituted pyrroles. Green Chemistry, 2019, 21, 4941-4945.	4.6	32
290	Electrochemical oxidation synergizing with Br \tilde{A} ,nsted-acid catalysis leads to $[4+2]$ annulation for the synthesis of pyrazines. Green Chemistry, 2019, 21, 765-769.	4.6	32
291	An Update on Oxidative C–H Carbonylation with CO. ACS Catalysis, 2022, 12, 7470-7485.	5.5	32
292	Trifluoromethanesulfonic Acid Catalyzed Synergetic Oxidative/[3+2] Cyclization of Quinones with Olefins. Angewandte Chemie - International Edition, 2013, 52, 10195-10198.	7.2	31
293	Palladium catalysed \hat{l}^2 -selective oxidative Heck reaction of an electron-rich olefin. Chemical Communications, 2014, 50, 1110-1112.	2.2	31
294	Externalâ€Oxidantâ€Free Electrochemical Oxidative Trifluoromethylation of Arenes Using CF ₃ SO ₂ Na as the CF ₃ Source. Chinese Journal of Chemistry, 2019, 37, 817-820.	2.6	31
295	Electrochemical/Photochemical Aminations Based on Oxidative Cross-Coupling between C–H and N–H. Synthesis, 2019, 51, 83-96.	1.2	31
296	Metal-free electrochemical C3-sulfonylation of imidazo[1,2- <i>a</i>]pyridines. Organic Chemistry Frontiers, 2021, 8, 3815-3819.	2.3	31
297	Oxidative <scp>Crossâ€Coupling</scp> Reactions between Two Nucleophiles ^{â€} . Chinese Journal of Chemistry, 2022, 40, 256-266.	2.6	31
298	Precise electro-reduction of alkyl halides for radical defluorinative alkylation. Science China Chemistry, 2022, 65, 762-770.	4.2	31
299	Revealing the Ligand Effect on Copper(I) Disproportionation via Operando IR Spectra. Organometallics, 2015, 34, 206-211.	1.1	30
300	Pd/Cu-catalyzed dual C–H bond carbonylation towards the synthesis of fluorazones. Chemical Communications, 2017, 53, 4354-4357.	2.2	30
301	Alkynylation of \hat{l} ±-halocarbonyl compounds \hat{a} €"a Stille-type cross-coupling for the formation of C(sp) \hat{a} €"C(sp3) bonds under neutral conditions. Chemical Communications, 2007, , 2342-2344.	2.2	29
302	Electrochemical Oxidative C(sp ³)â^'H/Nâ^'H Crossâ€Coupling for <i>N</i> â€Mannich Bases with Hydrogen Evolution. ChemSusChem, 2019, 12, 3073-3077.	3.6	29
303	Electrochemical oxidative decarboxylation and 1,2-aryl migration towards the synthesis of 1,2-diaryl ethers. Chemical Science, 2020, 11, 10000-10004.	3.7	29
304	Electrochemical <scp>Palladiumâ€Catalyzed</scp> Intramolecular C—H Amination of <scp>2â€Amidobiaryls</scp> for Synthesis of Carbazoles. Chinese Journal of Chemistry, 2021, 39, 143-148.	2.6	29
305	Radical–Radical Cross-Coupling Assisted N–S Bond Formation Using Alternating Current Protocol. CCS Chemistry, 2022, 4, 2674-2685.	4.6	29
306	n-Dopable polythiophenes as high capacity anode materials for all-organic Li-ion batteries. Journal of Electroanalytical Chemistry, 2013, 688, 118-122.	1.9	28

#	Article	IF	CITATIONS
307	Copper-catalyzed oxidative alkenylation of thioethers via Csp ³ â€"H functionalization. Organic and Biomolecular Chemistry, 2015, 13, 2264-2266.	1.5	28
308	Oxidative Alkane Câ^'H Alkoxycarbonylation. Chemistry - A European Journal, 2016, 22, 14484-14488.	1.7	28
309	Visibleâ€Lightâ€Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angewandte Chemie - International Edition, 2019, 58, 12206-12210.	7.2	28
310	Selective Oxidative [4+2] Imine/Alkene Annulation with H ₂ Liberation Induced by Photoâ€Oxidation. Angewandte Chemie, 2018, 130, 1300-1304.	1.6	28
311	Alcohol assisted C–C bond breaking: copper-catalyzed deacetylative α-arylation of β-keto esters and amides. Chemical Communications, 2013, 49, 6767.	2.2	27
312	Electrochemical Oxidative Câ^'H Sulfonylation of Anilines. Asian Journal of Organic Chemistry, 2019, 8, 1838-1841.	1.3	27
313	Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular $[2 + 1 + \langle i \rangle n \langle i \rangle]$ Annulation: Diazo Compounds Act as Radical Acceptors. Organic Letters, 2019, 21, 9300-9305.	2.4	27
314	An Electronâ€Deficient Diene as Ligand for Palladiumâ€Catalyzed Crossâ€Coupling Reactions: An Efficient Alkylation of Aryl Iodides by Primary and Secondary Alkylzinc Reagents. Advanced Synthesis and Catalysis, 2008, 350, 1349-1354.	2.1	26
315	A Convenient Synthesis and the Asymmetric Hydrogenation of <i>N</i> Phthaloyl Dehydroamino Acid Esters. Organic Letters, 2008, 10, 3033-3036.	2.4	26
316	Insights into the elementary steps in Negishi coupling through kinetic investigations. Organic and Biomolecular Chemistry, 2012, 10, 6817.	1.5	26
317	Dinuclear versus mononuclear pathways in zinc mediated nucleophilic addition: a combined experimental and DFT study. Dalton Transactions, 2015, 44, 11165-11171.	1.6	26
318	Copper-catalyzed and iodide-promoted aerobic C–C bond cleavage/C–N bond formation toward the synthesis of amides. RSC Advances, 2016, 6, 24349-24352.	1.7	26
319	Copper-catalyzed selective radical–radical cross-coupling for C–S bond formation: an access to α-alkylthionitriles. Chemical Communications, 2018, 54, 5574-5577.	2.2	26
320	Electrochemical Câ^'H/Nâ^'H Oxidative Cross Coupling of Imidazopyridines with Diarylamines to Synthesize Triarylamine Derivatives. ChemElectroChem, 2019, 6, 4173-4176.	1.7	26
321	Rh-catalyzed highly enantioselective formation of functionalized cyclopentanes and cyclopentanones. Organic and Biomolecular Chemistry, 2007, 5, 3531.	1.5	25
322	Solventâ€Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. Angewandte Chemie, 2016, 128, 1106-1109.	1.6	25
323	Homolytic cleavage of the O–Cu(<scp>ii</scp>) bond: XAFS and EPR spectroscopy evidence for one electron reduction of Cu(<scp>ii</scp>) to Cu(<scp>i</scp>). Chemical Communications, 2016, 52, 6914-6917.	2.2	25
324	Manganese-catalyzed chlorosulfonylation of terminal alkene and alkyne via convergent paired electrolysis. Cell Reports Physical Science, 2021, 2, 100476.	2.8	25

#	Article	IF	Citations
325	Electrochemical oxidative selenocyclization of olefinic amides towards the synthesis of iminoisobenzofurans. Organic Chemistry Frontiers, 2022, 9, 2786-2791.	2.3	25
326	A Reagentâ€Free Oxidative Cyclization Approach to Indolizine Derivatives from αâ€Picoline Derivatives and Nitroolefins. Chemistry - an Asian Journal, 2014, 9, 2068-2071.	1.7	24
327	Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine. Science Advances, 2015, 1, e1500656.	4.7	24
328	Catalytic Direct C2-Alkenylation of Oxazoles at Parts per Million Levels of Palladium/PhMezole-Phos Complex. Organic Letters, 2016, 18, 5300-5303.	2.4	24
329	Carbon Nanofibrous Microspheres Promote the Oxidative Double Carbonylation of Alkanes with CO. CheM, 2018, 4, 2861-2871.	5.8	24
330	Preparation of Polyfunctional Biaryl Derivatives by Cyclolanthanation of 2â€Bromobiaryls and Heterocyclic Analogues Using <i>n</i> Bu ₂ LaClâ<4 LiCl. Angewandte Chemie - International Edition, 2019, 58, 15631-15635.	7.2	24
331	Electrochemical dual-oxidation strategy enables access to α-chlorosulfoxides from sulfides. Science Bulletin, 2022, 67, 79-84.	4.3	24
332	Novel $\hat{l}\pm$ -arylnitriles synthesis via Ni-catalyzed cross-coupling of $\hat{l}\pm$ -bromonitriles with arylboronic acids under mild conditions. Organic and Biomolecular Chemistry, 2011, 9, 5343.	1.5	23
333	Mechanistic aspects of oxidation of palladium with O2. Science China Chemistry, 2012, 55, 2027-2035.	4.2	23
334	Metalâ€Free Direct Alkylation of Ketene Dithioacetals by Oxidative C(sp ²)â^'H/C(sp ³)â^'H Crossâ€Coupling. Chemistry - A European Journal, 2017, 23, 8814-8817.	1.7	23
335	Electrochemical Mn-Promoted Radical Selenylation of Boronic Acids with Diselenide Reagents. Organic Letters, 2022, 24, 3307-3312.	2.4	23
336	Alkoxycarbonylation of aryl iodides catalyzed by Pd with a thiourea type ligand under balloon pressure of CO. Tetrahedron, 2008, 64, 9581-9584.	1.0	22
337	"Push effect―of sulfur coordination: promoting the breaking of C(sp2)–I bond by pincer thioimido-Pd(ii) complexes. Chemical Science, 2012, 3, 1211.	3.7	22
338	Copperâ€Catalyzed Aerobic Decarboxylation/Ketooxygenation of Electronâ€Deficient Alkenes. Chemistry - A European Journal, 2015, 21, 18580-18583.	1.7	22
339	Markovnikov‧elective Radical Addition of Sâ€Nucleophiles to Terminal Alkynes through a Photoredox Process. Angewandte Chemie, 2017, 129, 610-614.	1.6	22
340	Furans Accessed through Visibleâ€Lightâ€Mediated Oxidative [3+2] Cycloaddition of Enols and Alkynes. Chemistry - A European Journal, 2017, 23, 17874-17878.	1.7	22
341	Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(<scp>i</scp>) to Cu(<scp>ii</scp>). Chemical Communications, 2015, 51, 318-321.	2.2	21
342	Pdâ€Catalyzed Hydroxylation of Aryl Boronic Acids Using In Situ Generated Hydrogen Peroxide. Chemistry - A European Journal, 2017, 23, 10023-10027.	1.7	21

#	Article	IF	Citations
343	Electrochemical Oxidative C3 Acyloxylation of Imidazo[1,2- <i>a</i>]pyridines with Hydrogen Evolution. Organic Letters, 2021, 23, 5932-5936.	2.4	21
344	K ₂ S ₂ O ₈ -induced site-selective phenoxazination/phenothiazination of electron-rich anilines. Green Chemistry, 2022, 24, 147-151.	4.6	21
345	Photoinduced Oxidative Cross-Coupling for O–S Bond Formation: A Facile Synthesis of Alkyl Benzenesulfonates. Synlett, 2017, 28, 1558-1563.	1.0	20
346	Palladium/Copper-Catalyzed Oxidative Coupling of Arylboronic Acids with Isocyanides: Selective Routes to Amides and Diaryl Ketones. Organic Letters, 2017, 19, 3954-3957.	2.4	20
347	Selective Oxidative Esterification from Two Different Alcohols via Photoredox Catalysis. ChemSusChem, 2017, 10, 79-82.	3.6	20
348	Low-Pressure Flow Chemistry of CuAAC Click Reaction Catalyzed by Nanoporous AuCu Membrane. ACS Applied Materials & Diterfaces, 2018, 10, 25930-25935.	4.0	20
349	Chitin microsphere supported Pd nanoparticles as an efficient and recoverable catalyst for CO oxidation and Heck coupling reaction. Carbohydrate Polymers, 2021, 251, 117020.	5.1	20
350	Electrochemical-induced benzyl Câ€"H amination towards the synthesis of isoindolinones <i>via</i> aroyloxy radical-mediated Câ€"H activation. Green Chemistry, 2022, 24, 1445-1450.	4.6	20
351	Alternating Current Electrolysis Enabled Formal Câ^'O/Oâ^'H Crossâ€Metathesis of 4â€Alkoxy Anilines with Alcohols. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
352	Structure–kinetic relationship study of organozinc reagents. Chemical Communications, 2014, 50, 8709.	2.2	19
353	Transmetalation of Ar ¹ ZnX with [Ar ² â€"Pdâ€"X] is the rate-limiting step: kinetic insights from a live Pd-catalyzed Negishi coupling. Organic Chemistry Frontiers, 2014, 1, 50-53.	2.3	19
354	Nickel-catalyzed oxidative cross-coupling of arylboronic acids with olefins. Pure and Applied Chemistry, 2014, 86, 321-328.	0.9	19
355	Metal-free radical oxidative alkoxycarbonylation and imidation of alkanes. Chemical Communications, 2017, 53, 6852-6855.	2.2	19
356	Electrochemical Oxidative Csp ³ â€"H/Sâ€"H Crossâ€Coupling with Hydrogen Evolution for Synthesis of Tetrasubstituted Olefins. Chinese Journal of Chemistry, 2019, 37, 547-551.	2.6	19
357	Direct electrooxidation of alkynes to benzoin bis-ethers. Organic Chemistry Frontiers, 2020, 7, 4064-4068.	2.3	19
358	Electrochemical Oxidative Carbonâ€Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. Angewandte Chemie - International Edition, 2021, 60, 1573-1577.	7.2	19
359	A facile access for the C-N bond formation by transition metal-free oxidative coupling of benzylic C-H bonds and amides. Science China Chemistry, 2015, 58, 1323-1328.	4.2	18
360	Mononuclear or Dinuclear? Mechanistic Study of the Zinc atalyzed Oxidative Coupling of Aldehydes and Acetylenes. Chemistry - A European Journal, 2017, 23, 6419-6425.	1.7	18

#	Article	IF	CITATIONS
361	Palladium-catalysed mono-α-alkenylation of ketones with alkenyl tosylates. Chemical Communications, 2017, 53, 952-955.	2.2	18
362	Hexafluoroâ€2â€Propanolâ€Promoted Electroâ€Oxidative [3+2] Annulation of 1,3â€Dicarbonyl Compounds and Alkenes. ChemElectroChem, 2019, 6, 3383-3386.	1.7	18
363	Electrochemical Synthesis of 2,5â€Disubstituted 1,3,4â€Oxadiazoles from αâ€Keto Acids and Acylhydrazines Under Mild Conditions. European Journal of Organic Chemistry, 2020, 2020, 3257-3260.	1.2	18
364	Electrochemical Oxidative Functionalization of Arylalkynes: Access to α,αâ€Đibromo Aryl Ketones. Advanced Synthesis and Catalysis, 2021, 363, 1022-1027.	2.1	18
365	Electrochemical Ring Expansion to Synthesize Medium-Sized Lactams Through C–C Bond Cleavage. CCS Chemistry, 2021, 3, 2233-2244.	4.6	18
366	Direct Observation of Reduction of Cu(II) to Cu(I) by P–H Compounds using XAS and EPR Spectroscopy. Organometallics, 2016, 35, 1426-1429.	1.1	17
367	Bu ₄ NI-Catalyzed Oxygen-Centered Radical Addition between Acyl Peroxides and Isocyanides. Organic Letters, 2017, 19, 3147-3150.	2.4	17
368	Elemental sulfur as a sulfuration agent in the copper-catalyzed C–H bond thiolation of electron-deficient arenes. Organic and Biomolecular Chemistry, 2017, 15, 8276-8279.	1.5	17
369	A stable rhodium single-site catalyst encapsulated within dendritic mesoporous nanochannels. Nanoscale, 2018, 10, 1047-1055.	2.8	17
370	Electrochemical Reductive Arylation of Nitroarenes with Arylboronic Acids. ChemSusChem, 2021, 14, 5399-5404.	3.6	17
371	Electrochemicalâ€Induced Hydroxysulfonylation of αâ€CF ₃ Alkenes to Access Tertiary βâ€Hydroxysulfones. Advanced Synthesis and Catalysis, 2022, 364, 1016-1022.	2.1	17
372	Singleâ€Electron Transfer between CuX ₂ and Thiols Determined by Extended Xâ€Ray Absorption Fine Structure Analysis: Application in Markovnikovâ€Type Hydrothiolation of Styrenes. Chemistry - A European Journal, 2016, 22, 18331-18334.	1.7	16
373	Oxidation-induced Câ \in "H amination leads to a new avenue to build Câ \in "N bonds. Chemical Communications, 2017, 53, 8984-8987.	2.2	16
374	Electrochemical Difunctionalization of Terminal Alkynes: Access to 1,4-Dicarbonyl Compounds. Organic Letters, 2022, 24, 289-292.	2.4	16
375	Highly enantioselective hydrogenation of exocyclic double bond of N-tosyloxazolidinones catalyzed by a neutral rhodium complex and its synthetic applications. Tetrahedron, 2006, 62, 9237-9246.	1.0	15
376	An efficient [3+2] cycloaddition for the synthesis of substituted pyrazolo[1,5-c]quinazolines. Tetrahedron, 2015, 71, 4473-4477.	1.0	15
377	Palladium-catalysed oxidative cross-esterification between two alcohols. Organic and Biomolecular Chemistry, 2015, 13, 6154-6157.	1.5	15
378	Decarboxylative (4+1) Oxidative Annulation of Malonate Monoesters with 2â€Vinylpyridine Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 2878-2882.	2.1	15

#	Article	IF	CITATIONS
379	Electrochemical Oxidative [4+2] Annulation of Different Styrenes toward the Synthesis of 1,2-Dihydronaphthalenes. CCS Chemistry, 2022, 4, 1557-1564.	4.6	15
380	<scp>Electrooxidationâ€Induced</scp> C(sp ³)â€"H/C(sp ²)â€"H <scp>Radicalâ€Radica Crossâ€Coupling</scp> between Xanthanes and <scp>Electronâ€Rich</scp> Arenes. Chinese Journal of Chemistry, 2022, 40, 1422-1428.	l 2.6	15
381	Quantitative kinetic investigation on transmetalation of ArZnX in a Pd-catalysed oxidative coupling. Chemical Communications, 2013, 49, 9615.	2.2	14
382	Oxidative cross-coupling: an alternative way for C–C bond formations. Science Bulletin, 2015, 60, 1391-1394.	4.3	14
383	para-Selective C–H bond functionalization of iodobenzenes. Chemical Communications, 2016, 52, 11366-11369.	2.2	14
384	Palladium-catalyzed aerobic (1+2) annulation of Csp ³ â€"H bonds with olefin for the synthesis of 3-azabicyclo[3.1.0]hex-2-ene. Chemical Communications, 2017, 53, 2294-2297.	2.2	14
385	From Anilines to Quinolines: Iodide―and Silverâ€Mediated Aerobic Double Câ^'H Oxidative Annulation–Aromatization. Chemistry - A European Journal, 2017, 23, 15874-15878.	1.7	14
386	Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials. Nano Letters, 2018, 18, 442-448.	4.5	14
387	The "kinetic capture―of an acylium ion from live aluminum chloride promoted Friedel–Crafts acylation reactions. Organic and Biomolecular Chemistry, 2013, 11, 1810.	1.5	13
388	Tuning O ₂ Reactivity through Synergistic Photo/Copper Catalysis: Direct Synthesis of 4â€Aryl tetralones via Cyclodimerization–Oxygenation of Styrenes. Chemistry - an Asian Journal, 2016, 11, 2117-2120.	1.7	13
389	Visible Light Mediated External Oxidant Free Selective C5 Bromination of 8â€Aminoquinoline Amides under Ambient Conditions. Asian Journal of Organic Chemistry, 2019, 8, 1136-1140.	1.3	13
390	Oxidant-Induced Azolation of Electron-Rich Phenol Derivatives. Organic Letters, 2020, 22, 5429-5433.	2.4	13
391	Electrochemical oxidative N–H/P–H cross-coupling with H ₂ evolution towards the synthesis of tertiary phosphines. Chemical Science, 2022, 13, 3002-3008.	3.7	13
392	Facile fabrication of highly dispersed Pd catalyst on nanoporous chitosan and its application in environmental catalysis. Carbohydrate Polymers, 2022, 286, 119313.	5.1	13
393	Transition-Metal-Catalyzed Oxidative Cross-Coupling Reactions. Synlett, 2010, 2010, 2527-2536.	1.0	12
394	Electrochemical Arylation of Electronâ€Deficient Arenes through Reductive Activation. Angewandte Chemie, 2019, 131, 15894-15898.	1.6	12
395	Cobaltâ€Catalyzed αâ€Arylation of Substituted αâ€Bromo αâ€Fluoro βâ€Lactams with Diaryl Zinc Reagents: Generalization to Functionalized Bromo Derivatives. Chemistry - A European Journal, 2020, 26, 13163-13169.	1.7	12
396	Electrochemical $(3\hat{A}+2)$ cyclization between amides and olefins. Chem Catalysis, 2021, 1, 1055-1064.	2.9	12

#	Article	IF	Citations
397	Electrochemical synthesis of versatile ammonium oxides under metal catalyst-, exogenous-oxidant-, and exogenous-electrolyte-free conditions. Chemical Communications, 2021, 57, 2768-2771.	2.2	12
398	Visible Light Promoted Benzylic C _{sp3} -H Bond Activation and Functionalization. Acta Chimica Sinica, 2017, 75, 15.	0.5	12
399	Electrochemically selective double C(sp ²) $\hat{a}\in X$ (X = S/Se, N) bond formation of isocyanides. Chemical Science, 2021, 12, 14121-14125.	3.7	12
400	Single-electron transfer oxidation-induced C–H bond functionalization via photo-/electrochemistry. Trends in Chemistry, 2022, 4, 179-190.	4.4	12
401	Electrochemical synthesis of α-amino amides <i>via</i> C(sp ³)–H bond activation. Green Chemistry, 2022, 24, 3964-3968.	4.6	12
402	Unravelling the hidden link of lithium halides and application in the synthesis of organocuprates. Nature Communications, 2017, 8, 14794.	5.8	11
403	Selective formation of phthalimides from amines, aldehydes and CO by Pd-catalyzed oxidative C–H aminocarbonylation. Organic Chemistry Frontiers, 2018, 5, 1957-1961.	2.3	11
404	Photocatalytic decarboxylative coupling between \hat{l}_{\pm} -oxocarboxylicacids and alkenes. Science China Chemistry, 2019, 62, 1497-1500.	4.2	11
405	Synthesis of 1H-indazoles by an electrochemical radical Csp2–H/N–H cyclization of arylhydrazones. Chemical Communications, 2022, 58, 665-668.	2.2	11
406	Paired electrolysis enabled annulation for the quinolyl-modification of bioactive molecules. Chemical Science, 2022, 13, 2310-2316.	3.7	11
407	In Situ Synthesis of CuN ₄ /Mesoporous Nâ€Doped Carbon for Selective Oxidative Crosscoupling of Terminal Alkynes under Mild Conditions. Small, 2022, 18, e2105178.	5.2	11
408	CO/Câ€H as an Acylating Reagent: A Palladiumâ€Catalyzed Aerobic Oxidative Carbonylative Esterification of Alcohols. Angewandte Chemie, 2014, 126, 5763-5767.	1.6	10
409	Electrochemical Oxidative [4+2] Annulation for the Ï€â€Extension of Unfunctionalized Heterobiaryl Compounds. Angewandte Chemie, 2020, 132, 15350-15355.	1.6	10
410	Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angewandte Chemie, 2020, 132, 7260-7264.	1.6	10
411	Trifluoromethanesulfonic Acid Catalyzed Synergetic Oxidative/[3+2] Cyclization of Quinones with Olefins. Angewandte Chemie, 2013, 125, 10385-10388.	1.6	9
412	Oxidation induced C(sp3)-O cleavage via visible-light photoredox catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 120-124.	2.0	9
413	XANES/EPR Evidence of the Oxidation of Nickel(II) Quinolinylpropioamide and Its Application in Csp ³ â^H Functionalization. Chemistry - A European Journal, 2019, 25, 4931-4934.	1.7	9
414	Efficient electrosynthesis of sulfinic esters via oxidative crossâ€coupling between alcohols and thiophenols. Journal of the Chinese Chemical Society, 2020, 67, 192-196.	0.8	9

#	Article	IF	CITATIONS
415	The Real Structure of Pd(<scp>OAc</scp>) ₂ in Various Solvents ^{â€} . Chinese Journal of Chemistry, 2021, 39, 307-311.	2.6	9
416	Electrochemical Cobalt-catalyzed Cyclotrimerization of Alkynes to 1,2,4-Substituted Arenes. ACS Catalysis, 2021, 11, 14892-14897.	5.5	9
417	Synthesis of Cyclopentene Derivatives via Electrochemically Induced Intermolecular Selective (3+2) Annulation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
418	Electrochemical Oxidative Cross oupling of Enaminones and Thiophenols to Construct Câ^'S Bonds. Chemistry - an Asian Journal, 2020, 15, 4005-4008.	1.7	8
419	Electrochemical Selective Oxidative Functionalization of Caffeine. Advanced Synthesis and Catalysis, 2020, 362, 1138-1143.	2.1	8
420	Insights into the extraction of photogenerated holes from CdSe/CdS nanorods for oxidative organic catalysis. Journal of Materials Chemistry A, 2021, 9, 12690-12699.	5.2	8
421	Pd/ï€-Acidic Ligand Catalyzed Arl and Alkyl-In Cross-CouplingReactions under Mild Conditions. Acta Chimica Sinica, 2012, 70, 1538.	0.5	8
422	Ligand-controlled gold catalyzed highly site-selective carbene transfer in CH bond formation. Chinese Chemical Letters, 2015, 26, 226.	4.8	7
423	Revealing the Structure and Reactivity of the Active Species in the FeCl ₂ –TBHP System: Case Study on Alkene Oxidation. Organometallics, 2018, 37, 1635-1640.	1.1	7
424	Dioxygen-triggered oxidative cleavage of the C–S bond towards C–N bond formation. Chemical Communications, 2019, 55, 12332-12335.	2.2	7
425	Autoxidative Coupling and Its Applications to C-H Functionalization. Acta Chimica Sinica, 2015, 73, 1245.	0.5	7
426	Aromatic C–H bond cleavage by using a Cu(i) ate-complex. Organic Chemistry Frontiers, 2016, 3, 975-978.	2.3	6
427	Oxidative βâ€Csp ³ â^H Functionalization of <i>t</i> BuOH: A Selective Radical/Radical Crossâ€Coupling Access to βâ€Hydroxy Thioethers. Chemistry - an Asian Journal, 2016, 11, 2246-2249.	1.7	6
428	Oxidation-induced ortho-selective C–H bond functionalization of 2-naphthylamine derivative. Science China Chemistry, 2018, 61, 1274-1277.	4.2	6
429	Redox active ligand and metal cooperation for C(sp ²)â€"H oxidation: extension of the galactose oxidase mechanism in water-mediated amide formation. Dalton Transactions, 2018, 47, 15293-15297.	1.6	6
430	Herstellung von polyfunktionellen Biarylderivaten durch Cyclolanthanierung von 2â€Bromobiarylen und heterocyclischen Analoga unter Verwendung von ⟨i⟩n⟨ i⟩Bu⟨sub⟩2⟨ sub⟩LaClâ⟨4 LiCl. Angewandte Chemie, 2019, 131, 15777-15782.	1.6	6
431	Photoinduced Radical Relay Way Toward α-CF ₃ Ketones with Low-Cost Trifluoromethylation Reagents. CCS Chemistry, 2021, 3, 1710-1717.	4.6	6
432	Recent Advances in Oxidative Coupling Reactions. Chinese Journal of Organic Chemistry, 2015, 35, 743.	0.6	6

#	Article	IF	CITATIONS
433	Palladiumâ€Catalyzed Aerobic Oxidative Crossâ€Esterification of Aldehydes with Alcohols. Asian Journal of Organic Chemistry, 2017, 6, 1566-1568.	1.3	5
434	Revealing the reduction process of Cu(<scp>ii</scp>) by sodium bis(trimethylsilyl)amide. Faraday Discussions, 2019, 220, 105-112.	1.6	5
435	Electrochemical Dimethyl <scp>Sulfideâ€Mediated</scp> Esterification of Amino Acids. Chinese Journal of Chemistry, 2021, 39, 3023-3028.	2.6	5
436	Revealing the solution structure of Pd(OAc) 2 with halide additives. Chinese Journal of Chemistry, 0,	2.6	5
437	Palladium-Catalyzed R(sp ³)-Zn/R(sp)-SnBu ₃ Oxidative Cross-Coupling. Synthesis, 2008, 2008, 649-654.	1.2	4
438	Which one is faster? A kinetic investigation of Pd and Ni catalyzed Negishi-type oxidative coupling reactions. Dalton Transactions, 2015, 44, 19777-19781.	1.6	4
439	Selective radical cascade (4+2) annulation with olefins towards the synthesis of chroman derivatives <i>via</i>) organo-photoredox catalysis. Chemical Science, 2022, 13, 6316-6321.	3.7	4
440	Effect of Lithium Chloride on Tuning the Reactivity of Pauson-Khand ReactionsÂ-Catalyzed by Palladium-Tetramethylthiourea. Synthesis, 2007, 2007, 2565-2570.	1.2	3
441	A novel self-promoted Morita-Baylis-Hillman-like dimerization. Science Bulletin, 2010, 55, 2794-2798.	1.7	3
442	Synthesis of Thiopheneâ€Based Ï€â€Conjugated Oligomers via Ligandâ€Enabled Pdâ€Catalyzed Suzuki–Miyaura Coupling of Haloterthienyls. Chemistry - an Asian Journal, 2018, 13, 1660-1663.	^a 1.7	3
443	Reply to Correspondence on "Carbon entered Radical Addition to O=C of Amides or Esters as a Route to Câ°'O Bond Formationsâ€. Chemistry - A European Journal, 2019, 25, 7768-7770.	1.7	3
444	Cellulose derived Pd nano-catalyst for efficient catalysis. RSC Advances, 2022, 12, 18676-18684.	1.7	3
445	Elucidating the structure of a high-spin σ-phenyliron(iii) species in a live FeCl3–PhZnCl reaction system. Chemical Communications, 2018, 54, 1481-1484.	2.2	2
446	Oxidationâ€Induced <i>para</i> â€Selective Formylation of N,Nâ€Substituted Aniline. Asian Journal of Organic Chemistry, 2018, 7, 1571-1574.	1.3	2
447	Visibleâ€Lightâ€Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angewandte Chemie, 2019, 131, 12334-12338.	1.6	2
448	Electrochemical Oxidative Carbonâ€Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. Angewandte Chemie, 2021, 133, 1597-1601.	1.6	2
449	Alternating Current Electrolysis Enabled Formal Câ^'O/Oâ^'H Crossâ€Metathesis of 4â€Alkoxy Anilines with Alcohols. Angewandte Chemie, 0, , .	1.6	2
450	Cyclisation Reactions., 2005, , 181-200.		1

#	Article	IF	CITATIONS
451	Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions. Chinese Journal of Organic Chemistry, 2022, 42, 600.	0.6	1
452	Highly Enantioselective Rh-Catalyzed Intramolecular Alder-Ene Reactions for the Syntheses of Chiral Tetrahydrofurans ChemInform, 2003, 34, no-no.	0.1	0
453	Highly Enantioselective Cycloisomerization of Enynes Catalyzed by Rhodium for the Preparation of Functionalized Lactams ChemInform, 2003, 34, no.	0.1	O
454	A Novel Highly Regio- and Diastereoselective Haloamination of Alkenes Catalyzed by Divalent Palladium ChemInform, 2004, 35, no.	0.1	0
455	Highly Enantioselective Asymmetric Hydrogenation of α-Phthalimide Ketone: An Efficient Entry to Enantiomerically Pure Amino Alcohols ChemInform, 2004, 35, no.	0.1	O
456	Enantioselective Syntheses of 3,4,5-Trisubstituted \hat{I}^3 -Lactones: Formal Synthesis of (-)-Blastmycinolactol ChemInform, 2005, 36, no.	0.1	0
457	Highly Enantioselective Syntheses of Functionalized αâ€Methyleneâ€Î³â€butyrolactones via Rh(I)â€Catalyzed Intramolecular Alder Ene Reaction: Application to Formal Synthesis of (+)â€Pilocarpine ChemInform, 2002, 33, 37-37.	0.1	O
458	Green Cross-Coupling Using Visible Light for C–O and C–N Bond Formation. Topics in Organometallic Chemistry, 2018, , 267-294.	0.7	0
459	Cover Picture: Electrochemical Oxidative Csp 3 —H/S—H Crossâ€Coupling with Hydrogen Evolution for Synthesis of Tetrasubstituted Olefins (Chin. J. Chem. 6/2019). Chinese Journal of Chemistry, 2019, 37, 538-538.	2.6	O
460	Frontispiece: Cobaltâ€Catalyzed αâ€Arylation of Substituted αâ€Bromo αâ€Fluoro βâ€Lactams with Diaryl Zinc Reagents: Generalization to Functionalized Bromo Derivatives. Chemistry - A European Journal, 2020, 26, .	1.7	0