Jose Maria Cabrera Marrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1637299/publications.pdf Version: 2024-02-01

	81839	102432
5,470	39	66
citations	h-index	g-index
223	223	3376
223	223	5520
docs citations	times ranked	citing authors
	5,470 citations 223 docs citations	5,470 39 citations h-index 223 223 docs citations 223 times ranked

#	Article	IF	CITATIONS
1	High temperature deformation of Inconel 718. Journal of Materials Processing Technology, 2006, 177, 469-472.	3.1	365
2	Constitutive relationships for hot deformation of austenite. Acta Materialia, 2011, 59, 6441-6448.	3.8	249
3	Hot deformation behavior of a medium carbon microalloyed steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3876-3882.	2.6	229
4	EBSD study of a hot deformed austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 236-245.	2.6	201
5	Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 137-152.	2.6	182
6	Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 477, 366-371.	2.6	165
7	Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels. Acta Materialia, 2005, 53, 4605-4612.	3.8	164
8	Hot working of two AISI 304 steels: a comparative study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 343, 116-125.	2.6	143
9	Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 196-202.	2.6	140
10	Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 571, 103-114.	2.6	110
11	Printed circuit boards: A review on the perspective of sustainability. Journal of Environmental Management, 2013, 131, 298-306.	3.8	101
12	A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Materials & Design, 2015, 77, 126-131.	5.1	96
13	Modeling and Prediction of Hot Deformation Flow Curves. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 108-123.	1.1	95
14	Hot deformation of duplex stainless steels. Journal of Materials Processing Technology, 2003, 143-144, 321-325.	3.1	93
15	Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 96-107.	2.6	88
16	The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer. Journal of Manufacturing Processes, 2018, 34, 18-30.	2.8	76
17	Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing. Journal of Materials Science, 2010, 45, 2264-2273.	1.7	75
18	Microstructural evolution and constitutive equations of Inconel 718 alloy under quasi-static and quasi-dynamic conditions. Materials and Design, 2016, 94, 28-38.	3.3	74

#	Article	IF	CITATIONS
19	Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4133-4140.	2.6	71
20	ZK60 alloy processed by ECAP: Microstructural, physical and mechanical characterization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 594, 32-39.	2.6	69
21	Hot ductility behavior of boron microalloyed steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 464-470.	2.6	67
22	A simple Zerilli–Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels. Mechanics of Materials, 2016, 94, 38-45.	1.7	67
23	In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy. Journal of Materials Processing Technology, 2019, 263, 296-307.	3.1	66
24	Hot ductility behavior of high-Mn austenitic Fe–22Mn–1.5Al–1.5Si–0.45C TWIP steels microalloyed with Ti and V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 77-89.	2.6	62
25	Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4468-4474.	2.6	60
26	High-temperature deformation of delta-processed Inconel 718. Journal of Materials Processing Technology, 2018, 255, 204-211.	3.1	60
27	Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high-Mn austenitic twinning induced plasticity (TWIP) steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 552-560.	2.6	59
28	Hot deformation activation energy (QHW) of austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP steels microalloyed with Nb, V, and Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 46-52.	2.6	57
29	Hot flow behavior of boron microalloyed steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 49-55.	2.6	56
30	Macro-Micro Modeling of the Dendritic Microstructure of Steel Billets Processed by Continuous Casting ISIJ International, 1998, 38, 812-821.	0.6	54
31	Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy. Journal of Alloys and Compounds, 2011, 509, 3806-3810.	2.8	54
32	Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 616, 229-239.	2.6	50
33	Flow behaviour of medium carbon microalloyed steel under hot working conditions. Materials Science and Technology, 1996, 12, 579-585.	0.8	45
34	High-pressure torsion of iron with various purity levels and validation of Hall-Petch strengthening mechanism. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 597-605.	2.6	43
35	Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 311-320.	2.6	42
36	Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 498-504.	2.6	42

#	Article	IF	CITATIONS
37	Precipitation and grain growth modelling in Ti-Nb microalloyed steels. Materialia, 2019, 5, 100233.	1.3	42
38	EBSD study of purity effects during hot working in austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 393, 83-90.	2.6	41
39	Analysis of the micro and substructural evolution during severe plastic deformation of ARMCO iron and consequences in mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 108-120.	2.6	39
40	Effect of Ti and B microadditions on the hot ductility behavior of a High-Mn austenitic Fe–23Mn–1.5Al–1.3Si–0.5C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 311-329.	2.6	38
41	Texture and fatigue behavior of ultrafine grained copper produced by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 273-282.	2.6	37
42	Comparison of the electro-optic coefficient r33 in well-defined phases of proton exchanged LiNbO3 waveguides. Applied Physics B: Lasers and Optics, 2001, 73, 485-488.	1.1	36
43	Wear resistance and electroconductivity in a Cu–0.3Cr–0.5Zr alloy processed by ECAP. Journal of Materials Science, 2017, 52, 305-313.	1.7	33
44	Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP). International Journal of Advanced Manufacturing Technology, 2018, 95, 1165-1177.	1.5	33
45	Optical damage inhibition and thresholding effects in lithium niobate above room temperature. Optics Communications, 2000, 178, 211-216.	1.0	31
46	Characterization of Strain-Induced Precipitation in Inconel 718 Superalloy. Journal of Materials Engineering and Performance, 2016, 25, 3409-3417.	1.2	31
47	Abnormal grain growth in a medium-carbon microalloyed steel. Journal of Materials Science, 1996, 31, 1303-1309.	1.7	29
48	Microstructural and mechanical study in the plastic zone of ARMCO iron processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 697, 24-36.	2.6	29
49	Analysis of microstructure and strengthening in CuMg alloys deformed by equal channel angular pressing. Journal of Alloys and Compounds, 2015, 626, 340-348.	2.8	28
50	Modeling thermomechanical processing of austenite. Journal of Materials Processing Technology, 2003, 143-144, 403-409.	3.1	27
51	Evaluation of the Hot Ductility of a C–Mn Steel Produced from Scrap Recycling. ISIJ International, 2007, 47, 1518-1526.	0.6	27
52	Interaction between recrystallization and strain-induced precipitation in a high Nb- and N-bearing austenitic stainless steel: Influence of the interpass time. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 637, 189-200.	2.6	27
53	EBSD characterization of repetitive grain refinement in AZ31 magnesium alloy. Materials Chemistry and Physics, 2015, 149-150, 339-343.	2.0	26
54	Equal channel angular pressing of a TWIP steel: microstructure and mechanical response. Journal of Materials Science, 2017, 52, 6291-6309.	1.7	26

#	Article	IF	CITATIONS
55	Critical Strain for Dynamic Recrystallisation. The Particular Case of Steels. Metals, 2020, 10, 135.	1.0	25
56	Modeling the hot flow behavior of a Fe–22Mn–0.41C–1.6Al–1.4Si TWIP steel microalloyed with Ti, V and Nb. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 374-385.	2.6	24
57	Novel Mechanical Characterization of Austenite and Ferrite Phases within Duplex Stainless Steel. Metals, 2020, 10, 1352.	1.0	24
58	Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 116-125.	2.6	23
59	HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters. Computer Physics Communications, 2022, 278, 108398.	3.0	23
60	Laser assisted conical spin forming of dual phase automotive steel. Experimental demonstration of work hardening reduction and forming limit extension. Physics Procedia, 2010, 5, 215-225.	1.2	22
61	FE thermo-mechanical simulation of welding residual stresses and distortion in Ti-containing TWIP steel through GTAW process. Journal of Manufacturing Processes, 2020, 59, 801-815.	2.8	22
62	Characterization of the hot deformation in a microalloyed medium carbon steel using processing maps. Scripta Materialia, 1996, 34, 1303-1308.	2.6	21
63	Prediction of Generation of High- and Low-Angle Grain Boundaries (HAGB and LAGB) During Severe Plastic Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4674-4684.	1.1	21
64	Ductility and plasticity of ferritic-pearlitic steel after severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140624.	2.6	21
65	Effect of carbon content on plastic flow behaviour of plain carbon steels at elevated temperature. Materials Science and Technology, 2003, 19, 1137-1147.	0.8	20
66	Modeling of the hot deformation behavior of boron microalloyed steels under uniaxial hot-compression conditions. International Journal of Materials Research, 2008, 99, 1336-1345.	0.1	20
67	Hot working analysis of a CuZn40Pb2 brass on the monophasic (β) and intercritical (α+β) regions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 42-50.	2.6	19
68	Effect of strain on recrystallisation–precipitation interaction in low vanadium microalloyed steel. Materials Science and Technology, 1999, 15, 635-642.	0.8	18
69	Light-induced damage mechanisms in α-phase proton-exchanged LiNbO 3 waveguides. Applied Physics B: Lasers and Optics, 1999, 68, 989-993.	1.1	18
70	Effect of Boron on the Hot Ductility Behavior of a Low Carbon Advanced Ultra-High Strength Steel (A-UHSS). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5165-5176.	1.1	18
71	Modification of As-cast Al-Mg/B4C composite by addition of Zr. Journal of Alloys and Compounds, 2016, 685, 70-77.	2.8	18
72	Structure and microstructure evolution of Al–Mg–Si alloy processed by equal-channel angular pressing. International Journal of Advanced Manufacturing Technology, 2017, 92, 1731-1740.	1.5	18

#	Article	IF	CITATIONS
73	Numerical and experimental study of a 5754-aluminum alloy processed by heterogeneous repetitive corrugation and straightening. Journal of Materials Research and Technology, 2020, 9, 1941-1947.	2.6	18
74	Twin-Induced Plasticity of an ECAP-Processed TWIP Steel. Journal of Materials Engineering and Performance, 2017, 26, 554-562.	1.2	17
75	Microstructural investigation of Al-Mg/B4C composite deformed at elevated temperature. Journal of Alloys and Compounds, 2018, 763, 643-651.	2.8	17
76	Strain rate sensitivity of nanocrystalline and ultrafine-grained steel obtained by mechanical attrition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 325-333.	2.6	16
77	Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels. Theoretical and Applied Fracture Mechanics, 2016, 86, 351-360.	2.1	16
78	Softening and hardening of ECAP nickel under ultrasonic treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 136-142.	2.6	16
79	High cycle fatigue of ARMCO iron severely deformed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 681, 85-96.	2.6	16
80	Duplex and Superduplex Stainless Steels: Microstructure and Property Evolution by Surface Modification Processes. Metals, 2019, 9, 347.	1.0	16
81	An investigation of the thermal stability of an Mg Dy alloy after processing by high-pressure torsion. Materials Characterization, 2019, 151, 519-529.	1.9	16
82	Heat Treatment Design for a QP Steel: Effect of Partitioning Temperature. Metals, 2021, 11, 1136.	1.0	16
83	An inverse analysis of the hot uniaxial compression test by means of the finite element method. Steel Research = Archiv Für Das Eisenhüttenwesen, 1999, 70, 59-66.	0.2	15
84	Dynamic deformation response of Al-Mg and Al-Mg/B4C composite at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 645-654.	2.6	15
85	Thermal stability of ARMCO iron processed by ECAP. International Journal of Advanced Manufacturing Technology, 2018, 98, 2917-2932.	1.5	15
86	EBSD Study of Delta-Processed Ni-Based Superalloy. Metals, 2020, 10, 1466.	1.0	15
87	Effect of the thermal cycle on the hot ductility and fracture mechanisms of a C–Mn steel. Engineering Failure Analysis, 2007, 14, 374-383.	1.8	14
88	The origin of microstructure inhomogeneity in Mg–3Al–1Zn processed by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 551, 128-132.	2.6	14
89	Effect of V on Hot Deformation Characteristics of TWIP Steels. Steel Research International, 2012, 83, 334-339.	1.0	14
90	Effect of the Chemical Composition on the Peak and Steady Stresses of Plain Carbon and Microalloyed Steels Deformed under Hot Working Conditions. Materials Science Forum, 1998, 284-286, 127-134.	0.3	13

#	Article	IF	CITATIONS
91	Influence of the carbon content on the strain rate sensitivity of nanocrystalline steels. Scripta Materialia, 2008, 59, 631-634.	2.6	13
92	Texture and Lattice Distortion Study of an Al-6061-T6 Alloy Produced by ECAP. Materials Transactions, 2015, 56, 1781-1786.	0.4	13
93	Microstructural Evolution and Mechanical Behavior of an Al-6061 Alloy Processed by Repetitive Corrugation and Straightening. Metals, 2020, 10, 489.	1.0	13
94	On the hot working of FeSi ferritic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 127-138.	2.6	12
95	Texture evolution of experimental silicon steel grades. Part I: Hot rolling. Journal of Magnetism and Magnetic Materials, 2017, 429, 367-371.	1.0	12
96	Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 831-841.	0.7	12
97	Effect of the microstructure generated by Repetitive Corrugation and Straightening (RCS) process on the mechanical properties and stress corrosion cracking of Al-7075 alloy. Journal of Materials Research and Technology, 2021, 15, 4564-4572.	2.6	12
98	Role of Cu2O during hot compression of 99.9% pure copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 92-101.	2.6	11
99	Microstructure influencing physical and mechanical properties of electrolytic tough pitch copper produced by equal channel angular pressing. Mechanics of Materials, 2013, 67, 9-14.	1.7	11
100	The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 205-216.	2.6	11
101	Microstructure, Texture, and Tensile Properties of Ultrafine/Nano-Grained Magnesium Alloy Processed by Accumulative Back Extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2563-2573.	1.1	11
102	Study of the Thermochemical Surface Treatment Effect on the Phase Precipitation and Degradation Behaviour of DSS and SDSS. Materials, 2020, 13, 165.	1.3	11
103	Analysis of strain-induced precipitates by delta-processing in Inconel 718 superalloy. Materials Characterization, 2021, 173, 110926.	1.9	11
104	Stress–strain response and microstructural evolution of a FeMnCAl TWIP steel during tension–compression tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 310-320.	2.6	10
105	Grain Refinement of Pure Copper by ECAP. Materials Science Forum, 0, 584-586, 393-398.	0.3	9
106	Tensile and compressive test in nanocrystalline and ultrafine carbon steel. Journal of Materials Science, 2010, 45, 4796-4804.	1.7	9
107	Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes. Journal of Materials Engineering and Performance, 2018, 27, 560-571.	1.2	9
108	Residual stresses and microstructural evolution of ECAPed AA2017. Materials Characterization, 2019, 152, 44-57.	1.9	9

#	Article	IF	CITATIONS
109	High temperature cyclic oxidation behavior of a low manganese Fe12Mn9Cr5Si4Ni-NbC shape memory stainless steels. Journal of Alloys and Compounds, 2021, 857, 158198.	2.8	9
110	Strainâ€Hardening Behavior in an AA6060â€T6 Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials, 2021, 23, .	1.6	9
111	Characterization of microstructure and texture of binary Mg-Ce alloy processed by equal channel angular pressing. Materials Characterization, 2021, 181, 111454.	1.9	9
112	Aplicación de los mapas de procesado en la optimización de los parámetros de un proceso de conformado en caliente. Il parte. Mapas de procesado de un acero microaleado con un contenido medio de carbono. Revista De Metalurgia, 1997, 33, 153-160.	0.1	9
113	Effect of the nanostructuring by high-pressure torsion process on the secondary phase precipitation in UNS S32750 Superduplex stainless steel. Materials Characterization, 2022, 183, 111639.	1.9	9
114	Effect of clustering of precipitates on grain growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1097-1103.	1.1	8
115	Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 227-232.	2.6	8
116	Design and Development of Complex Phase Steels with Improved Combination of Strength and Stretch-Flangeability. Metals, 2020, 10, 824.	1.0	8
117	Characterization of the Gas Tungsten Arc Welding (CTAW) joint of Armco iron nanostructured by Equal-Channel Angular Pressing (ECAP). Journal of Materials Processing Technology, 2021, 288, 116902.	3.1	8
118	Effect of rare-earth metals on the hot strength of HSLA steels. International Journal of Materials Research, 2002, 93, 1132-1139.	0.8	7
119	Electro-Optic Behaviour of Reverse Proton Exchanged LiNbO3 Waveguides. Physica Status Solidi A, 2002, 193, R7-R9.	1.7	7
120	Predicting Multiple Peak Dynamic Recrystallization of Copper. Materials Science Forum, 2004, 467-470, 1181-1186.	0.3	7
121	Microstructural evolution and mechanical response of nanocrystalline and ultrafine-grained steel obtained by mechanical milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 215-220.	2.6	7
122	Effect of initial microstructure, frequency and temperature on the low cycle fatigue behaviour of the soldering alloys 96.5Sn–3.5Ag and 63Sn–37Pb. Engineering Failure Analysis, 2008, 15, 220-228.	1.8	7
123	Equal Channel Angular Pressing of Cu-Al Bimetallic Rod. Materials Science Forum, 0, 706-709, 1811-1816.	0.3	7
124	Texture analysis in ultrafine grained coppers processed by equal channel angular pressing. Materials Research, 2013, 16, 619-624.	0.6	7
125	Consolidation of AA 7075-2Âwt% ZrO2 Composite Powders by Severe Plastic Deformation via ECAP. Acta Metallurgica Sinica (English Letters), 2016, 29, 895-901.	1.5	7
126	Thermomechanical controlled processing to achieve very fine grains in the ISO 5832-9 austenitic stainless steel biomaterial. Materials Characterization, 2017, 127, 153-160.	1.9	7

#	Article	IF	CITATIONS
127	Texture development during hot deformation of Al/Mg alloy reinforced with ceramic particles. Journal of Alloys and Compounds, 2019, 798, 267-272.	2.8	7
128	Softening-precipitation interaction in a Nb-and N-bearing austenitic stainless steel under stress relaxation. Journal of Materials Research and Technology, 2020, 9, 7807-7816.	2.6	7
129	Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results. Physics of Metals and Metallography, 2020, 121, 32-40.	0.3	7
130	Characterization of LiNbO3 waveguides fabricated by proton exchange in water. Applied Physics A: Materials Science and Processing, 2005, 81, 205-208.	1.1	6
131	Photorefractive fixing phenomena in alpha-phase proton-exchanged LiNbO3 waveguides. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2229.	0.9	6
132	Effects of Precipitation during Dynamic Recrystallization of Copper with Different Oxygen Levels. Materials Science Forum, 2007, 558-559, 511-516.	0.3	6
133	Mechanical response of nanocrystalline steel obtained by mechanical attrition. Journal of Materials Science, 2007, 42, 1757-1764.	1.7	6
134	Influence of severe plastic deformation in phase transformation of superduplex stainless steels. Journal of Materials Science, 2019, 54, 2648-2657.	1.7	6
135	The Effect of Pre-Annealing on the Evolution of the Microstructure and Mechanical Behavior of Aluminum Processed by a Novel SPD Method. Materials, 2020, 13, 2361.	1.3	6
136	A dislocation assisted self-consistent constitutive model for the high-temperature deformation of particulate metal-matrix composite. Philosophical Magazine, 2021, 101, 276-305.	0.7	6
137	Microstructural analysis of a partially recrystallized nickel-based superalloy undergoing delta-processing. Journal of Alloys and Compounds, 2022, 907, 164403.	2.8	6
138	Investigation on Texture Evolution and Recrystallization Aspects of Novel Mg–Zn–Gd–Y–Nd Alloys. Metals and Materials International, 2021, 27, 3983-3992.	1.8	5
139	Formability of the 5754-Aluminum Alloy Deformed by a Modified Repetitive Corrugation and Straightening Process. Materials, 2020, 13, 633.	1.3	5
140	Mechanical, stress corrosion cracking and crystallographic study on flat components processed by two combined severe plastic deformation techniques. Journal of Materials Research and Technology, 2022, 18, 1281-1294.	2.6	5
141	Dark developing of photorefractive proton-exchanged LiNbO3 waveguides. Optical Materials, 2001, 18, 111-114.	1.7	4
142	Modeling the Hot Flow Stress of Commercial Purity Coppers with Different Oxygen Levels. Materials Science Forum, 2003, 426-432, 3921-3926.	0.3	4
143	Influence of carbon content on high temperature response of plain carbon steels. Ironmaking and Steelmaking, 2005, 32, 309-313.	1.1	4
144	A Model for Multi Peak Dynamic Recrystallization in Copper. Materials Science Forum, 2007, 550, 565-570.	0.3	4

#	Article	IF	CITATIONS
145	Study of the Plastic Deformation in Nanocrystalline and Ultrafine Iron and Carbon Steels. Materials Science Forum, 0, 584-586, 617-622.	0.3	4
146	Enhancing Ductility of ECAP Processed Metals. Materials Science Forum, 2010, 654-656, 1219-1222.	0.3	4
147	Effect of boron on the continuous cooling transformation kinetics in a low carbon advanced ultra-high strength steel (A-UHSS). Materials Research Society Symposia Proceedings, 2012, 1485, 83-88.	0.1	4
148	Characterization of Precipitation Kinetics of Inconel 718 Superalloy by the Stress Relaxation Technique. Materials Science Forum, 0, 706-709, 2393-2399.	0.3	4
149	Manganese Effect on Q&P CMnSi Steels. Materials Science Forum, 2016, 879, 430-435.	0.3	4
150	High-Temperature Deformation of Inconel 718PlusTM. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	0.5	4
151	Novel Method of Severe Plastic Deformation - Continuous Closed Die Forging: CP Aluminum Case Study. Defect and Diffusion Forum, 2018, 385, 302-307.	0.4	4
152	Metal injection moulding (MIM) as an alternative fabrication process for the production of TWIP steel. Powder Metallurgy, 2019, 62, 205-211.	0.9	4
153	Simulación de la fluencia en caliente de un acero microaleado con un contenido medio de carbono. III parte. Ecuaciones constitutivas. Revista De Metalurgia, 1997, 33, 215-228.	0.1	4
154	Modelling the Hot Working of Simple Geometries Employing Physical-Based Constitutive Equations and the Finite Element Method. Materials Science Forum, 1998, 284-286, 369-376.	0.3	3
155	Study of the Nanometric Grain Size Distribution in Iron Compacts Obtained by Mechanical Milling. Materials Science Forum, 2006, 503-504, 1007-1012.	0.3	3
156	Ductility of Bulk Nanocrystalline and Ultrafine Grain Iron and Steel. Materials Science Forum, 0, 633-634, 197-203.	0.3	3
157	On the Onset of Dynamic Recrystallization in Steels. Advanced Materials Research, 0, 409, 431-436.	0.3	3
158	Thermal Stability and Microstructural Behavior of ECAP Processed Copper. , 2011, , .		3
159	Influence of Inhomogeneity on Mechanical Properties of Commercially Pure Titanium Processed by HPT. Defect and Diffusion Forum, 0, 385, 284-289.	0.4	3
160	Enhancement of pitting corrosion resistance for AA1050 processed by continuous closed die forging. Journal of Materials Research and Technology, 2020, 9, 13185-13195.	2.6	3
161	Metallographic, Structural, and Mechanical Characterization of Weld Nuggets in Fe–Mn–Al–C Lowâ€Density Steels Microalloyed with Ti/B and Ce/La by Gas Tungsten Arc Welding Process. Steel Research International, 2021, 92, 2100229.	1.0	3
162	Alternative methods to attach components in printed circuit boards to improve their recyclability. DYNA (Colombia), 2014, 81, 146.	0.2	3

#	Article	IF	CITATIONS
163	Effect of Processing Conditions on the Microstructure, Mechanical Properties, and Corrosion Behavior of Two Austenitic Stainless Steels for Bioimplant Applications. Metals, 2020, 10, 1311.	1.0	3
164	Simulación de la fluencia en caliente de un acero microaleado con un contenido medio de carbono. Il parte. Recristalización dinámica: inicio y cinética. Revista De Metalurgia, 1997, 33, 143-152.	0.1	3
165	Modelización de la deformación en caliente de un cobre puro comercial. Revista De Metalurgia, 2001, 37, 177-183.	0.1	3
166	Approach to the microstructural control of two medium carbon microalloyed steels under hot forming conditions. Revista De Metalurgia, 2006, 42, .	0.1	3
167	Effect Of Quenching & Partitioning Process On A Low Carbon Steel. Advanced Materials Letters, 2017, 8, 641-644.	0.3	3
168	Comportement d'un acier microallié à teneur moyenne en carbone lors d'un processus de mise en forme à chaud. Revue De Metallurgie, 1998, 95, 589-598.	0.3	2
169	Plastic deformation of a nanostructured and ultra-fine grained Fe-1%Cr with a bimodal grain size distribution. International Journal of Material Forming, 2008, 1, 487-490.	0.9	2
170	Hot Deformation and Ductility Analysis of Continuous Cast C40 Steel by Means of Tensile and Compression Tests. Materials Science Forum, 0, 638-642, 3152-3157.	0.3	2
171	Mechanical Properties of Different Coppers Processed by Equal Channel Angular Pressing. Materials Science Forum, 2010, 667-669, 713-718.	0.3	2
172	Mechanical properties and microstructure of low carbon ultra-high strength steels (UHSS) microalloyed with boron. Materials Research Society Symposia Proceedings, 2012, 1373, 89.	0.1	2
173	Effect of Microalloying Elements (B, Nb, V and Ti) on the Strain Hardening Behavior of High-Manganese TWIP Steels Materials Research Society Symposia Proceedings, 2012, 1373, 83.	0.1	2
174	Microstructural Unit Controlling Cleavage Crack Propagation in High Strength Bainitic Steels. Key Engineering Materials, 0, 622-623, 846-853.	0.4	2
175	Analysis of Recrystallization and Strain-Induced Precipitation on High Nb- and N-Bearing Austenitic Stainless Steel. Advanced Materials Research, 0, 922, 700-705.	0.3	2
176	Microstructure and Mechanical Properties of Linear Friction Welded Titanium Subjected to ECAP. Reviews on Advanced Materials Science, 2018, 57, 104-109.	1.4	2
177	Thermal analysis of CuMg alloys deformed by equal channel angular pressing. Journal of Thermal Analysis and Calorimetry, 2021, 146, 1393-1403.	2.0	2
178	Microstructural and Mechanical Characterization of Ti ontaining Twinningâ€Induced Plasticity Steel Welded Joint Produced by Gas Tungsten Arc Welding Process. Steel Research International, 2020, 91, 2000129.	1.0	2
179	Simulación de la fluencia en caliente de un acero microaleado con un contenido medio de carbono. I parte. Aproximación teórica. Revista De Metalurgia, 1997, 33, 80-88.	0.1	2
180	Deformación a velocidad variable de hierro ARMCO. Revista De Metalurgia, 2004, 40, 139-145.	0.1	2

#	Article	IF	CITATIONS
181	Hot ductility and fracture mechanisms of a structural steel. Revista De Metalurgia, 2006, 42, .	0.1	2
182	La recristalización dinámica durante la deformación en caliente de un acero calidad armco. Revista De Metalurgia, 2001, 37, 184-189.	0.1	2
183	Long-Lifetime Photorefractive Holographic Devices via Thermal Fixing Methods. , 2003, , 91-112.		2
184	Constitutive Modeling of Hot Deformation of Carbon Steels in The Intercritical Zone. Materials Research, 0, 25, .	0.6	2
185	High Temperature Behavior of Eutectic Sn-Pb and Sn-Ag Soldering Alloys. Materials Science Forum, 2003, 442, 37-42.	0.3	1
186	Study of the Hot Ductility and Fracture Mechanisms of a Medium Carbon Steel. Materials Science Forum, 2003, 442, 49-54.	0.3	1
187	Microstructural Evolution of Two Medium Carbon Microalloyed Steels during Hot Forging Process. Materials Science Forum, 2005, 500-501, 155-162.	0.3	1
188	Microstructure and Mechanical Properties of an AZ31 Magnesium Alloy Processed by Accumulative Back Extrusion (ABE). Materials Science Forum, 2010, 667-669, 1033-1038.	0.3	1
189	Influence of Manganese on the Hot Working Behaviour of Construction Steels. Advanced Materials Research, 0, 89-91, 580-585.	0.3	1
190	Dynamically recrystallized austenitic grain in a low carbon advanced ultra-high strength steel (A-UHSS) microalloyed with boron under hot deformation conditions. Materials Research Society Symposia Proceedings, 2012, 1485, 143-148.	0.1	1
191	Calorimetric Analysis of a Mg-Zn-Zr Alloy Processed by Equal Channel Angular Pressing via Route A. Key Engineering Materials, 2013, 583, 32-35.	0.4	1
192	Microstructure and Crystallographic Texture Development of Microalloyed Twinning Induced Plasticity (TWIP) Steels Under Uniaxial Hot-Tensile Conditions. Materials Research Society Symposia Proceedings, 2015, 1765, 103-108.	0.1	1
193	Effect of Ti Microaddition on Cavitation Behavior During Uniaxial Hot-Tensile of Fe-22Mn-1.5Al-1.3Si-0.5C Austenitic TWIP Steel. Materials Research Society Symposia Proceedings, 2016, 1812, 123-128.	0.1	1
194	Deformation Heterogeneity Study of a 6061-T6 Aluminum Alloy Processed by Equal Channel Angular Pressing. Materials Science Forum, 2017, 905, 40-45.	0.3	1
195	Transmission Electron Microscopy Characterization and Highâ€Resolution Modeling of Secondâ€Phase Particles of V―and Tiâ€Containing Twinningâ€Induced Plasticity Steel under Uniaxial Hotâ€Tensile Condition. Steel Research International, 2019, 90, 1900098.	1.0	1
196	Effect of loading mode on the microstructural heterogeneity of ultra-fine-grained iron. Materials Letters, 2021, 304, 130630.	1.3	1
197	Comportamiento termomecÃ;nico de aceros AISI 304. Revista De Metalurgia, 2001, 37, 171-176.	0.1	1
198	Study on the Formability and Texture evolution of AA6061 Alloy Processed by Repetitive Corrugation and Straightening. Journal of Applied Research and Technology, 2021, 19, 548-561.	0.6	1

#	Article	IF	CITATIONS
199	Effect of rare-earth metals on the hot strength of HSLA steels. International Journal of Materials Research, 2022, 93, 1132-1139.	0.1	1
200	Application of Recrystallization, Grain Growth and Precipitation to Model Hot Forging of Microalloyed Steels for Automotive Components. Materials Science Forum, 1993, 113-115, 391-398.	0.3	0
201	Deformation Behaviour of 7075Al/SiCp Composite during Multi-Pass Deformation at High Temperatures. Materials Science Forum, 2003, 426-432, 2039-2044.	0.3	0
202	Microstructural Evolution of a Commercial 0.04%C Steel During Batch Annealing. Materials Science Forum, 2006, 509, 17-24.	0.3	0
203	Thixotropic Behaviour of a Cu – Eutectic Sn-Pb Slurry. Materials Science Forum, 2007, 560, 17-22.	0.3	0
204	Hot deformation behavior of low carbon advanced high strength steel (AHSS) microalloyed with boron. Materials Research Society Symposia Proceedings, 2009, 1243, 1.	0.1	0
205	Analysis of Hot Tensile and Compression Curves to Assess the Hot Ductility of C-Mn Steels. Materials Science Forum, 2010, 638-642, 3158-3163.	0.3	0
206	Prediction of hot flow curves of construction steels by physically-based constitutive equations. Materials Research Society Symposia Proceedings, 2012, 1485, 1-8.	0.1	0
207	Effect of the Si and Al Content in Ferritic Electrical Steels on the Flow Behaviour and Dynamic Softening in Hot Rolling. Materials Science Forum, 0, 762, 747-752.	0.3	0
208	Microstructural and Calorimetric Analysis of ZK60 Alloy Processed by ECAP. Advanced Materials Research, 2013, 682, 169-175.	0.3	0
209	Influence of composition, grain size, and oxide particles on the strength of consolidated ball-milled iron. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012024.	0.3	0
210	Influence of Boron on the Precipitation Kinetics in Advanced Ultra-High Strength Steels. Materials Research Society Symposia Proceedings, 2015, 1765, 91-96.	0.1	0
211	Boron Effect on the Softening Parameter (Ω) of Advanced Ultra-High Strength Steels (A-UHSS) under Uniaxial Hot-Compression Conditions. Materials Research Society Symposia Proceedings, 2015, 1765, 97-102.	0.1	0
212	Dislocation study of ARMCO iron processed by ECAP. Materials Research Society Symposia Proceedings, 2016, 1818, 1.	0.1	0
213	High Temperature Deformation of Inconel 718Plusâ"¢. , 2016, , .		0
214	Determination of Critical Stress for Dynamic Recrystallization of a High-Mn Austenitic TWIP Steel Micro-Alloyed with Vanadium. Materials Research Society Symposia Proceedings, 2016, 1812, 41-46.	0.1	0
215	Advanced Ultra-High Strength Steel (A-UHSS): Boron-Containing. , 2016, , 100-106.		0
216	A Physically Based Model for High Temperature Deformation of Inconel 718Plusâ"¢. , 2017, , .		0

#	Article	IF	CITATIONS
217	Influence of Nb Microaddition on Microstructure and Texture Evolution in a Fe-21Mn-1.3Al-1.5Si-0.5C TWIP Steel under Uniaxial Hot-Tensile Conditions. MRS Advances, 2017, 2, 3797-3803.	0.5	0
218	Grain growth behaviour of an AISI 422 martensitic stainless steel after hot deformation process. Canadian Metallurgical Quarterly, 2018, 57, 367-379.	0.4	0
219	Characterization of Bimetallic Interface in Cu–Al and Ni–Cu Rods Cold Welded by Equal Channel Angular Pressing. Advanced Engineering Materials, 2020, 22, 1900653.	1.6	0
220	Evolución de la microestructura y de las propiedades mecánicas durante el recocido isotérmico de un acero de 0,04 % C calmado al aluminio. Revista De Metalurgia, 2005, 41, 427-440.	0.1	0
221	EFEITO DO TEMPO ENTRE DEFORMAÇÕES NA INTERAÇÃO RECRISTALIZAÇÃO: PRECIPITAÇÃO DE UM AÃ: INOXIDÃVEL AUSTENÃTICO COM ALTO TEOR DE NIÓBIO E NITROGÊNIO. Tecnologia Em Metalurgia, Materiais E Mineracao, 2015, 12, 294-303.	‡0 0.1	0