
Marco Lombardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1636673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleophilic Additions to Nitrones. Synthesis, 2000, 2000, 759-774.	2.3	120
2	An Improved Protocol for the Direct Asymmetric Aldol Reaction in Ionic Liquids, Catalysed by Onium Ion‶agged Prolines. Advanced Synthesis and Catalysis, 2007, 349, 2061-2065.	4.3	113
3	The Ion Tag Strategy as a Route to Highly Efficient Organocatalysts for the Direct Asymmetric Aldol Reaction. Advanced Synthesis and Catalysis, 2009, 351, 276-282.	4.3	100
4	Entropy-Controlled Selectivity in the Vinylation of a Cyclic Chiral Nitrone. An Efficient Route to Enantiopure Polyhydroxylated Pyrrolidines. Journal of Organic Chemistry, 2001, 66, 1264-1268.	3.2	75
5	3-Bromopropenyl Esters in Organic Synthesis: Indium- and Zinc-Mediated Entries to Alk-1-ene-3,4-diolsâ€. Journal of Organic Chemistry, 2003, 68, 997-1006.	3.2	72
6	Highly Efficient Ionâ€Tagged Catalyst for the Enantioselective Michael Addition of Aldehydes to Nitroalkenes. Advanced Synthesis and Catalysis, 2009, 351, 2801-2806.	4.3	64
7	A recyclable triethylammonium ion-tagged diphenylphosphine palladium complex for the Suzuki–Miyaura reaction in ionic liquids. Green Chemistry, 2009, 11, 574.	9.0	62
8	Synthesis and Photophysical Properties of Fluorescent Derivatives of Methylmercury. Organometallics, 1996, 15, 2415-2417.	2.3	57
9	Ionic Tags in Catalyst Optimization: Beyond Catalyst Recycling. ChemCatChem, 2010, 2, 135-145.	3.7	55
10	Direct Asymmetric Aldol Reaction Catalyzed by an Imidazolium-Tagged <i>trans</i> -4-Hydroxy- <scp>l</scp> -proline under Aqueous Biphasic Conditions. Synlett, 2008, 2008, 2471-2474.	1.8	54
11	α-Hydroxyallylation Reaction of Carbonyl Compounds. Chemical Reviews, 2007, 107, 3843-3879.	47.7	53
12	Protonated arginine and lysine as catalysts for the direct asymmetric aldol reaction in ionic liquids. Tetrahedron, 2008, 64, 9203-9207.	1.9	53
13	A modular approach to catalyst hydrophobicity for an asymmetric aldol reaction in a biphasic aqueous environment. Organic and Biomolecular Chemistry, 2008, 6, 4224.	2.8	53
14	Mercury and methylmercury contamination in surficial sediments and clams of a coastal lagoon (Pialassa Baiona, Ravenna, Italy). Continental Shelf Research, 2003, 23, 1821-1831.	1.8	51
15	An Efficient High-Yield Synthesis ofd-ribo-Phytosphingosineâ€. Organic Letters, 2006, 8, 3303-3305.	4.6	51
16	Task-specific ionic liquids as reaction media for the cobalt-catalysed cyclotrimerisation reaction of arylethynes. Green Chemistry, 2007, 9, 321.	9.0	43
17	Highly Stereoselective [4+2] and [3+2] Spiroannulations of 2â€(2â€Oxoindolinâ€3â€ylidene)acetic Esters Catalyzed by Bifunctional Thioureas. Chemistry - A European Journal, 2015, 21, 11038-11049.	3.3	43
18	Synthesis of a highly Mg2+-selective fluorescent probe and its application to quantifying and imaging total intracellular magnesium. Nature Protocols, 2017, 12, 461-471.	12.0	43

Marco Lombardo

#	Article	IF	CITATIONS
19	A Liquid–Liquid Biphasic Homogeneous Organocatalytic Aldol Protocol Based on the Use of a Silica Gel Bound Multilayered Ionic Liquid Phase. ChemCatChem, 2012, 4, 1000-1006.	3.7	42
20	The Lagoon of Ravenna (Italy): Characterisation of mercury-contaminated sediments1This work was presented at the Fourth International Conference on `Mercury as a Global Pollutant', Hamburg, August 4–8, 1996.1. Science of the Total Environment, 1998, 213, 121-128.	8.0	41
21	A New Protocol for the Acetoxyallylation of Aldehydes Mediated by Indium in THF. Organic Letters, 2001, 3, 2981-2983.	4.6	40
22	Migratory Aptitudes of Simple Alkyl Groups in the Anionotropic Rearrangement of Quaternary Chloromethyl Borate Species:Â A Combined Experimental and Theoretical Investigation. Journal of Organic Chemistry, 2003, 68, 3397-3405.	3.2	40
23	The Reaction of Nitrones with Organometallic Compounds: Scope, Limitations and Synthetic Applications. Current Organic Chemistry, 2002, 6, 695-713.	1.6	39
24	An environmentally friendly α-hydroxyallylation reaction of the Garner aldehyde: a comparative assessment of alternative Barbier conditions. Tetrahedron, 2004, 60, 11725-11732.	1.9	38
25	A simple smartphone-based thermochemiluminescent immunosensor for valproic acid detection using 1,2-dioxetane analogue-doped nanoparticles as a label. Sensors and Actuators B: Chemical, 2019, 279, 327-333.	7.8	37
26	Regio- and Stereoselective Synthesis of Homoallylic Alcohols Based on the Use of (3-Chloroprop-1-en-1-yl)boronates. European Journal of Organic Chemistry, 2002, 2002, 2823.	2.4	36
27	The First Enantioselective Addition of Diethylzinc to Aldehydes in Ionic Liquids Catalysed by a Recyclable Ionâ€Tagged Diphenylprolinol. Chemistry - A European Journal, 2008, 14, 11288-11291.	3.3	36
28	The First Enantioselective Organocatalytic Synthesis of 3‣piroâ€Î±â€Alkylideneâ€Î³â€Butyrolactone Oxindoles. Chemistry - A European Journal, 2016, 22, 3865-3872.	3.3	36
29	Organocatalytic Conjugate Addition of Nitroalkanes to 3-Ylidene Oxindoles: A Stereocontrolled Diversity Oriented Route to Oxindole Derivatives. Journal of Organic Chemistry, 2013, 78, 12049-12064.	3.2	35
30	Quantitative Chemical Imaging of the Intracellular Spatial Distribution of Fundamental Elements and Light Metals in Single Cells. Analytical Chemistry, 2014, 86, 5108-5115.	6.5	32
31	A New Henry/Michael/Retroâ€Henry/Henry Domino Sequence Promoted by Bifunctional Organocatalysts. Advanced Synthesis and Catalysis, 2013, 355, 938-946.	4.3	31
32	Synthesis of 1,2â€Dioxetanes as Thermochemiluminescent Labels for Ultrasensitive Bioassays: Rational Prediction of Olefin Photooxygenation Outcome by Using a Chemometric Approach. Chemistry - A European Journal, 2016, 22, 18156-18168.	3.3	30
33	Synthesis and Iodocyclization of Homoallylic Hydroxylamines. Journal of Organic Chemistry, 1997, 62, 5623-5626.	3.2	29
34	Lewis-acid promoted addition of 2-trimethylsilyloxyfuran to nitrones: Synthesis and absolute configuration of tetrahydro-2-benzyl-3-(1-benzyloxyethyl)-furo[2,3-d]isoxazol-5(2H)ones. Tetrahedron: Asymmetry, 1996, 7, 1059-1068.	1.8	28
35	A New Robust and Efficient Ionâ€Tagged Proline Catalyst Carrying an Amide Spacer for the Asymmetric Aldol Reaction. Advanced Synthesis and Catalysis, 2011, 353, 3234-3240.	4.3	27
36	Dioxetane-Doped Silica Nanoparticles as Ultrasensitive Reagentless Thermochemiluminescent Labels for Bioanalytics. Analytical Chemistry, 2012, 84, 9913-9919.	6.5	27

#	Article	IF	CITATIONS
37	Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays. Analytical and Bioanalytical Chemistry, 2015, 407, 1567-1576.	3.7	27
38	Multiphase Homogeneous Catalysis: Common Procedures and Recent Applications. Synlett, 2010, 2010, 1746-1765.	1.8	26
39	Enantioselective Conjugate Addition of Nitroalkanes to Alkylidenemalonates Promoted by Thioureaâ€Based Bifunctional Organocatalysts. Advanced Synthesis and Catalysis, 2012, 354, 364-370.	4.3	26
40	Diaza-18-crown-6 hydroxyquinoline derivatives as flexible tools for the assessment and imaging of total intracellular magnesium. Chemical Science, 2012, 3, 727-734.	7.4	25
41	Preparation and Characterization of Thermochemiluminescent Acridine-Containing 1,2-Dioxetanes as Promising Ultrasensitive Labels in Bioanalysis. Journal of Organic Chemistry, 2013, 78, 11238-11246.	3.2	24
42	A novel fluorescent chemosensor allows the assessment of intracellular total magnesium in small samples. Analyst, The, 2014, 139, 1201-1207.	3.5	24
43	3-Bromo-propenyl acetate in organic synthesis. The zinc-promoted α-hydroxyallylation of ketones. Tetrahedron Letters, 2003, 44, 2823-2826.	1.4	23
44	Microwave Assisted Synthesis of a Small Library of SubstitutedN,Nâ€2-Bis((8-hydroxy-7-quinolinyl)methyl)-1,10-diaza-18-crown-6 Ethers. Journal of Organic Chemistry, 2010, 75, 6275-6278.	3.2	23
45	A Fluorescent Sensor Array Based on Heteroatomic Macrocyclic Fluorophores for the Detection of Polluting Species in Natural Water Samples. Frontiers in Chemistry, 2018, 6, 258.	3.6	23
46	Trimethylsilyl triflate promoted addition of allyltributylstannane to aldonitrones; one-pot synthesis of 5-iodomethylisoxazolidines. Tetrahedron Letters, 1998, 39, 1643-1646.	1.4	21
47	Trimethylsilyltriflate-Promoted Addition of 2-Trimethylsilyloxyfuran to a Chiral Cyclic Nitrone; a Short Synthesis of [1S(1α,2β,7β,8α,8aα)]-1,2-Di(t-butyldiphenylsilyloxy)-indolizidine-7,8-diol. Tetrahedron, 2000, 56, 323-326.	1.9	20
48	3-Chloropropenyl pivaloate in organic synthesis: the first asymmetric catalytic entry to syn-alk-1-ene-3,4-diols. Chemical Communications, 2003, , 1762.	4.1	20
49	New isoxazolidinone and 3,4-dehydro-β-proline derivatives as antibacterial agents and MAO-inhibitors: A complex balance between two activities. European Journal of Medicinal Chemistry, 2016, 124, 906-919.	5.5	20
50	A new procedure for the speciation of mercury in water based on the transformation of mercury (II) and methylmercury (II) into stable acetylides followed by HPLC analysis. Applied Organometallic Chemistry, 1995, 9, 713-718.	3.5	17
51	Indium-mediated coupling of 3-bromopropenyl acetate with (S)-Garner aldehyde: a route to 1,4-dideoxy-1,4-l-iminoribitol. Tetrahedron Letters, 2003, 44, 9147-9149.	1.4	17
52	Cross-Coupling of 5,11-Dibromotetracene Catalyzed by a Triethylammonium Ion Tagged Diphenylphosphine Palladium Complex in Ionic Liquids. Organometallics, 2011, 30, 4325-4329.	2.3	17
53	A New Class of Antimalarial Dioxanes Obtained through a Simple Two-Step Synthetic Approach: Rational Design and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2011, 54, 8526-8540.	6.4	17
54	Single cell versus large population analysis: cell variability in elemental intracellular concentration and distribution. Analytical and Bioanalytical Chemistry, 2018, 410, 337-348.	3.7	17

#	Article	IF	CITATIONS
55	Synthesis of four stereoisomers of 5-amino-2,5-dideoxy-heptono-1,5-lactams. Tetrahedron, 1997, 53, 11721-11730.	1.9	16
56	The Hydroboration of Propargyl Bromide. Simple One-Pot Three-Component Routes to (Z)-1-Bromoalk-1-en-4-ols and toanti-Homoallylic Alcohols. Journal of Organic Chemistry, 2000, 65, 8767-8773.	3.2	16
57	3-Bromopropenyl Methylcarbonate in Organic Synthesis: A Straightforward Approach to 4,5-Disubstituted 5-Vinyl-1,3-dioxolan-2-ones. European Journal of Organic Chemistry, 2006, 2006, 3061-3063.	2.4	16
58	Systematic approach in Mg2+ ions analysis with a combination of tailored fluorophore design. Analytica Chimica Acta, 2017, 988, 96-103.	5.4	16
59	Analysis of Intracellular Magnesium and Mineral Depositions during Osteogenic Commitment of 3D Cultured Saos2 Cells. International Journal of Molecular Sciences, 2020, 21, 2368.	4.1	16
60	Title is missing!. Chemical Communications, 2001, , 2310-2311.	4.1	15
61	An Efficient Diastereoselective Route to Differentially Protectedanti-4-Amino-1-alken-3-ols. Journal of Organic Chemistry, 2007, 72, 1834-1837.	3.2	15
62	Stereo-controlled approach to pyrrolidine iminosugar C-glycosides and 1,4-dideoxy-1,4-imino-l-allitol using a d-mannose-derived cyclic nitrone. Tetrahedron Letters, 2009, 50, 6906-6908.	1.4	15
63	A New Family of Conformationally Constrained Bicyclic Diarylprolinol Silyl Ethers as Organocatalysts. Advanced Synthesis and Catalysis, 2012, 354, 3428-3434.	4.3	15
64	Optimized Synthesis and Antimalarial Activity of 1,2â€Đioxaneâ€4â€carboxamides. European Journal of Organic Chemistry, 2014, 2014, 1607-1614.	2.4	15
65	Non-enzymatic portable optical sensors for microcystin-LR. Chemical Communications, 2018, 54, 2747-2750.	4.1	15
66	A strikingly fast route to methylmercury acetylides as a new opportunity for monomethylmercury detection. Journal of Organometallic Chemistry, 2005, 690, 588-593.	1.8	14
67	3-Halopropenyl esters as precursors of a new class of oxygen-substituted allylic organometallic compounds: Applications in organic synthesis. Pure and Applied Chemistry, 2004, 76, 657-669.	1.9	13
68	<scp>d</scp> -Glucose-Derived 1,2,4-Trioxepanes: Synthesis, Conformational Study, and Antimalarial Activity. Organic Letters, 2015, 17, 4074-4077.	4.6	13
69	The Organocatalytic αâ€Fluorination of Chiral γâ€Nitroaldehydes: the Challenge of Facing the Construction of a Quaternary Fluorinated Stereocenter. European Journal of Organic Chemistry, 2016, 2016, 3223-3232.	2.4	13
70	The interaction of heme with plakortin and a synthetic endoperoxide analogue: new insights into the heme-activated antimalarial mechanism. Scientific Reports, 2017, 7, 45485.	3.3	13
71	Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay. Nanoscale, 2018, 10, 14012-14021.	5.6	13
72	Chemodivergent Photocatalytic Synthesis of Dihydrofurans and β,γâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2021, 363, 3267-3282.	4.3	13

MARCO LOMBARDO

#	Article	IF	CITATIONS
73	(<i>E</i>)â€3â€(Alkoxycarbonylâ€2â€Alkyliden)â€2â€Oxindoles: Multidentate Pronucleophiles for the Organocatalytic, Vinylogous Michael Addition to Nitroolefins. Advanced Synthesis and Catalysis, 2018, 360, 711-721.	4.3	13
74	A Route to (2α,3β,4α)-(±)-2-(Hydroxymethyl)-3,4-pyrrolidinediol Based on the α-Silyloxyallylation of a Glycolaldehyde-Derived Nitrone. European Journal of Organic Chemistry, 1998, 1998, 2361-2364.	2.4	12
75	3-Bromo-propenyl acetate in organic synthesis: an expeditious route to 3-alkyl-4-acetoxy-5-iodomethyl isoxazolidines. Tetrahedron Letters, 2005, 46, 3789-3792.	1.4	12
76	Further optimization of plakortin pharmacophore: Structurally simple 4-oxymethyl-1,2-dioxanes with promising antimalarial activity. European Journal of Medicinal Chemistry, 2013, 70, 875-886.	5.5	12
77	New antimalarial 3-methoxy-1,2-dioxanes: optimization of cellular pharmacokinetics and pharmacodynamics properties by incorporation of amino and N-heterocyclic moieties at C4. RSC Advances, 2015, 5, 72995-73010.	3.6	12
78	A Recyclable Chiral 2â€(Triphenylmethyl)pyrrolidine Organocatalyst Anchored to [60]Fullerene. Advanced Synthesis and Catalysis, 2019, 361, 2936-2944.	4.3	12
79	Evaluation of the Pharmacophoric Role of the O–O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. Journal of Medicinal Chemistry, 2020, 63, 13140-13158.	6.4	12
80	Unlocking Access to Enantiopure Fused Uracils by Chemodivergent [4+2] Cross ycloadditions: DFTâ€Supported Homoâ€Synergistic Organocatalytic Approach. Angewandte Chemie - International Edition, 2020, 59, 20055-20064.	13.8	12
81	A Simple and Efficient Protocol for Proline-Catalysed Asymmetric Aldol Reaction. Catalysts, 2020, 10, 649.	3.5	12
82	Cobalt-Catalysed Addition of Allylidene Dipivalate to Aldehydes. A Formal Homoaldol Condensation. Advanced Synthesis and Catalysis, 2005, 347, 2015-2018.	4.3	10
83	An Efficient Cobalt(I)-Catalysed Reformatsky Reaction using α-Chloro Esters. Advanced Synthesis and Catalysis, 2007, 349, 465-468.	4.3	10
84	Evaluation of synthetic substituted 1,2-dioxanes as novel agents against human leishmaniasis. European Journal of Medicinal Chemistry, 2019, 170, 126-140.	5.5	10
85	Electrosteric Activation by using Ionâ€Tagged Prolines: A Combined Experimental and Computational Investigation. ChemCatChem, 2013, 5, 2913-2924.	3.7	9
86	Redoxâ€Neutral Metalâ€Free Threeâ€Component Carbonylative Dearomatization of Pyridine Derivatives with CO ₂ . Chemistry - A European Journal, 2019, 25, 15272-15276.	3.3	9
87	A one-pot three-component route to anti-homoallylic alcohols based on the hydroborationof propargyl bromide. Tetrahedron Letters, 1998, 39, 7571-7574.	1.4	8
88	3-Bromopropenyl Methyl Carbonate: A New Reagent for the α-Hydroxy Allylation Reaction of Aldehydes in Water. Synthesis, 2005, 2005, 2609-2614.	2.3	7
89	Expanding the targets of the diaza-18-crown-6 hydroxyquinoline derivatives family to Zn(II) ions for intracellular sensing. Supramolecular Chemistry, 2013, 25, 7-15.	1.2	7
90	Allenamides Playing Domino: A Redoxâ€Neutral Photocatalytic Synthesis of Functionalized 2â€Aminofurans. Advanced Synthesis and Catalysis, 2022, 364, 362-371.	4.3	7

#	Article	IF	CITATIONS
91	The Hydroboration of Propargyl Chloride: A Flexible One-pot Three-component Process Easily Directed Towards the Synthesis of (E)-Homoallylic Alcohols or anti-Homoallylic Alcohols. Synlett, 2001, 2001, 0601-0604.	1.8	6
92	The Chemistry of Zinc Enolates. , 0, , 797-861.		6
93	3-Bromozinc Propenyl Esters:  An Experimental and Theoretical Study of the Unique Stereocrossover Observed in Their Addition to Aromatic and Aliphatic Aldehydes. Journal of Organic Chemistry, 2008, 73, 418-426.	3.2	6
94	Properties and Reactivity of Conformationally Constrained Bicyclic Diarylprolinol Silyl Ethers as Organocatalysts. European Journal of Organic Chemistry, 2014, 2014, 5946-5953.	2.4	6
95	SYNTHESIS OF 3-O-BENZYL-3,7-IMINO-1,3,6,7-TETRADEOXY-L-MANNO-HEPTITOL AND OF 3-O-BENZYL-3,7-IMINO-1,3,6,7-TETRADEOXY-D-GLUCO-HEPTITOL. Organic Preparations and Procedures International, 1997, 29, 485-488.	1.3	5
96	Revision of stereochemical assignments of (2,2-dimethyl-5-phenyl-[1,3]dioxolan-4-yl)-methanol. Tetrahedron: Asymmetry, 2004, 15, 289-292.	1.8	5
97	Unlocking Access to Enantiopure Fused Uracils by Chemodivergent [4+2] Cross ycloadditions: DFT‣upported Homo‣ynergistic Organocatalytic Approach. Angewandte Chemie, 2020, 132, 20230-20239.	2.0	5
98	A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Transactions, 2020, 49, 14497-14505.	3.3	4
99	Catalysis in Non-conventional Reaction Media. RSC Green Chemistry, 2009, , 1-79.	0.1	3
100	Thermochemiluminescenceâ€Based Sensitive Probes: Synthesis and Photophysical Characterization of Acridine ontaining 1,2â€Dioxetanes Focusing on Fluorophore Pushâ€Pull Effects. ChemPhotoChem, 2022, 6, .	3.0	2
101	Multidecagram Scale Synthesis of an Endoperoxide, Precursor of Anti-malarial and Anti-leishmanial Agents, <i>via</i> Free-Radical [2 + 2 + 2] Annulation with Molecular Oxygen. Organic Process Research and Development, 2021, 25, 2718-2729.	2.7	2
102	Diastereoselective Synthesis of Chiral Oxathiazine 2â€Oxide Scaffolds as Sulfinyl Transfer Agents. Advanced Synthesis and Catalysis, 0, , .	4.3	2
103	Repeatability and reproducibility of intracellular molar concentration assessed by synchrotron-based x-ray fluorescence microscopy. AIP Conference Proceedings, 2016, , .	0.4	1
104	The Reaction of Nitrones with Organometallic Compounds: Scope, Limitations and Synthetic Applications. ChemInform, 2003, 34, no.	0.0	0
105	3-Bromopropenyl Esters in Organic Synthesis: Indium- and Zinc-Mediated Entries to Alk-1-ene-3,4-diols ChemInform, 2003, 34, no.	0.0	0
106	3-Bromo-propenyl Acetate in Organic Synthesis. The Zinc-Promoted α-Hydroxyallylation of Ketones ChemInform, 2003, 34, no.	0.0	0
107	3-Chloropropenyl Pivaloate in Organic Synthesis: The First Asymmetric Catalytic Entry of syn-Alk-1-ene-3,4-diols ChemInform, 2003, 34, no.	0.0	0
108	An Environmentally Friendly ?-Hydroxyallylation Reaction of the Garner Aldehyde: A Comparative Assessment of Alternative Barbier Conditions ChemInform, 2005, 36, no.	0.0	0

Marco Lombardo

#	Article	IF	CITATIONS
109	3-Bromo-propenyl Acetate in Organic Synthesis: An Expeditious Route to 3-Alkyl-4-acetoxy-5-iodomethyl Isoxazolidines ChemInform, 2005, 36, no.	0.0	0
110	Catalysis in Ionic Liquids: A Key to Sustainable Chemistry. , 2008, , 37-78.		0
111	Catalysis in aqueous media for the synthesis of drug-like molecules. Current Opinion in Drug Discovery & Development, 2010, 13, 717-32.	1.9	0