
Gianpaolo Ruocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined microwaves and convection heating: A conjugate approach. Journal of Food Engineering, 2010, 97, 31-39.	5.2	80
2	A generalized conjugate model for forced convection drying based on an evaporative kinetics. Journal of Food Engineering, 2008, 89, 232-240.	5.2	49
3	Conjugate heat and mass transfer in drying: A modeling review. Journal of Food Engineering, 2016, 176, 28-35.	5.2	35
4	Analysis of food cooling by jet impingement, including inherent conduction. Journal of Food Engineering, 2007, 81, 12-20.	5.2	25
5	Conjugate fluid flow and kinetics modeling for heat exchanger fouling simulation. International Journal of Thermal Sciences, 2009, 48, 2006-2012.	4.9	23
6	Characterization of a combination oven prototype: Effects of microwave exposure and enhanced convection to local temperature rise in a moist substrate. International Communications in Heat and Mass Transfer, 2011, 38, 557-564.	5.6	21
7	Evaluation of acrylamide formation in potatoes during deep-frying: The effect of operation and configuration. Journal of Food Engineering, 2010, 98, 141-149.	5.2	19
8	Conjugate heat and mass transfer by jet impingement over a moist protrusion. International Journal of Heat and Mass Transfer, 2014, 70, 192-201.	4.8	14
9	Effect of low frequency, high power pool ultrasonics on viscosity of fluid food: Modeling and experimental validation. Journal of Food Engineering, 2013, 119, 627-632.	5.2	12
10	Convective control to microwave exposure of moist substrates. Part I: Model methodology. International Journal of Heat and Mass Transfer, 2015, 86, 943-949.	4.8	12
11	Analysis of a thermoelectrical device for active heat transfer control. International Journal of Thermal Sciences, 2001, 40, 911-916.	4.9	10
12	An experimental study of the local evolution of moist substrates under jet impingement drying. International Journal of Thermal Sciences, 2011, 50, 81-87.	4.9	10
13	Heat and mass transfer modeling during continuous flow processing of fluid food by direct steam injection. International Communications in Heat and Mass Transfer, 2010, 37, 239-244.	5.6	8
14	Convective control to microwave exposure of moist substrates. Part II: Model validation and application. International Journal of Heat and Mass Transfer, 2015, 86, 950-956.	4.8	8
15	Computational transport phenomena in bioprocessing with the approach of the optimized source term in the governing equations. Heat and Mass Transfer, 2012, 48, 1485-1493.	2.1	7
16	Mass transfer modeling of solid tumor growth for therapy evaluation and prognosis. International Communications in Heat and Mass Transfer, 2020, 117, 104781.	5.6	5
17	Final design of a multi cavity volumetric solar receiver. Solar Energy Materials and Solar Cells, 1991, 24, 284-292.	0.4	4
18	Modeling and experimental validation of mass transfer from carbonated beverages in polyethylene terephthalate bottles. Journal of Food Engineering, 2012, 108, 570-578.	5.2	4

GIANPAOLO RUOCCO

#	Article	IF	CITATIONS
19	Mass and heat transfer modeling of bio-substrates during packaging. Heat and Mass Transfer, 2013, 49, 799-808.	2.1	4
20	Combining microwave and jet-impingement in a oven prototype. Procedia Food Science, 2011, 1, 1331-1337.	0.6	3
21	A mass transfer model for computational prediction of proliferation and therapy outcome of non-Hodgkin lymphoma. International Communications in Heat and Mass Transfer, 2021, 125, 105332.	5.6	3
22	Optimal design of an innovative microwave-based fluid heater. International Journal of Thermal Sciences, 2021, 164, 106848.	4.9	3
23	Analysis of thermally activated fluid-structure interaction for a morphing plate immersed in turbulent flow. International Journal of Heat and Mass Transfer, 2022, 194, 123081.	4.8	3
24	A heat and mass transfer perspective of microbial behavior modeling in a structured vegetable food. Journal of Food Engineering, 2016, 190, 72-79.	5.2	2
25	COLDwaveTM processing: cold jet impingement to control bio-substrate drying by microwave and preserve its quality. Heat and Mass Transfer, 2019, 55, 953-963.	2.1	2
26	Towards a decisional support system in breast cancer surgery based on mass transfer modeling. International Communications in Heat and Mass Transfer, 2021, 129, 105733.	5.6	1
27	A predictive oncology framework—modeling tumor proliferation using a FEM platform. , 2020, , 427-450.		0
28	Heat Transfer Features of a Horizontal Slot Jet Impinging in Mixed Convection. , 2006, , .		0