Cun Yun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1636576/publications.pdf Version: 2024-02-01

<u>CIIN YUN XU</u>

#	Article	IF	CITATIONS
1	Self-woven monolayer polyionic mesh to achieve highly efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 428, 132074.	12.7	19
2	Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133209.	12.7	74
3	Collaborative strengthening by multi-functional molecule 3-thiophenboric acid for efficient and stable planar perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135134.	12.7	13
4	The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy, 2022, 95, 107050.	16.0	19
5	InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors. Nanoscale, 2022, 14, 5412-5424.	5.6	9
6	Interface barrier strategy for perovskite solar cells realized by In-situ synthesized polyionic layer. Chemical Engineering Journal, 2022, 439, 135704.	12.7	7
7	Selfâ€Formed Multifunctional Grain Boundary Passivation Layer Achieving 22.4% Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	13
8	Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: Experimental and theoretical evidence. EcoMat, 2022, 4, .	11.9	35
9	Simultaneous Passivation of Bulk and Interface Defects with Gradient 2D/3D Heterojunction Engineering for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 21079-21088.	8.0	26
10	An Inverted Perovskite Solar Cell with Good Comprehensive Performance Realized by Reducing the Concentration of Precursors. Nanomaterials, 2022, 12, 1736.	4.1	2
11	P-type doping in internally photoemitted hot carrier solar cells. Journal of Cleaner Production, 2021, 278, 124168.	9.3	2
12	Nitrogen-doped carbon nanotubes encapsulated Bi nanobuds for lithium based high-performance energy storage devices. Journal of Alloys and Compounds, 2021, 856, 158204.	5.5	12
13	Elimination of Charge Transport Layers in High-Performance Perovskite Solar Cells by Band Bending. ACS Applied Energy Materials, 2021, 4, 1294-1301.	5.1	13
14	Efficient and Stable Perovskite Solar Cells Achieved by Using Bifunctional Interfacial Materials to Modify SnO ₂ and MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Simultaneously. ACS Applied Energy Materials, 2021, 4, 3794-3802.	5.1	10
15	Impact of A-Site Cations on Fluorescence Quenching in Organic–Inorganic Hybrid Perovskite Materials. Journal of Physical Chemistry C, 2021, 125, 11524-11531.	3.1	3
16	Negative Photoconductance Effect: An Extension Function of the TiO <i>_x</i> â€Based Memristor. Advanced Science, 2021, 8, 2003765.	11.2	94
17	Correction to Efficient and Stable Perovskite Solar Cells Achieved by Using Bifunctional Interfacial Materials to Modify SnO2 and MAPbI3–xClx Simultaneously. ACS Applied Energy Materials, 2021, 4, 8660-8660.	5.1	0
18	Real-Time Acid Rain Sensor Based on a Triboelectric Nanogenerator Made of a PTFE–PDMS Composite Film. ACS Applied Electronic Materials, 2021, 3, 4162-4171.	4.3	22

Cun Yun Xu

#	Article	IF	CITATIONS
19	An analogue memristor made of silk fibroin polymer. Journal of Materials Chemistry C, 2021, 9, 14583-14588.	5.5	22
20	Hydrazine dihydrochloride as a new additive to promote the performance of tin-based mixed organic cation perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 2660-2667.	4.9	14
21	Mechanism for Enhancing Photocurrent of Hot Electron Collection Solar Cells by Adding LiF on the Outmost MAPbI ₃ Perovskite Layer. IEEE Journal of Photovoltaics, 2021, 11, 99-103.	2.5	5
22	An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite. Nano Energy, 2020, 68, 104383.	16.0	26
23	Electrical property modified hole transport layer (PEDOT:PSS) enhance the efficiency of perovskite solar cells: Hybrid co-solvent post-treatment. Organic Electronics, 2020, 78, 105582.	2.6	20
24	Highly Efficient Sn–Pb Perovskite Solar Cell and Highâ€Performance Allâ€Perovskite Fourâ€Terminal Tandem Solar Cell. Solar Rrl, 2020, 4, 1900396.	5.8	30
25	Coordinated Optical Matching of a Texture Interface Made from Demixing Blended Polymers for High-Performance Inverted Perovskite Solar Cells. ACS Nano, 2020, 14, 196-203.	14.6	64
26	Perovskite solar cells fabricated under ambient air at room temperature without any post-treatment. Organic Electronics, 2020, 86, 105918.	2.6	13
27	Passivation of defects in inverted perovskite solar cells using an imidazolium-based ionic liquid. Sustainable Energy and Fuels, 2020, 4, 3971-3978.	4.9	37
28	Electron Transport Materials: Evolution and Case Study for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000136.	5.8	32
29	Effect of guanidinium chloride in eliminating O ₂ ^{â^'} electron extraction barrier on a SnO ₂ surface to enhance the efficiency of perovskite solar cells. RSC Advances, 2020, 10, 19513-19520.	3.6	14
30	Resistive switching behaviors and memory logic functions in single MnO _x nanorod modulated by moisture. Chemical Communications, 2019, 55, 9915-9918.	4.1	51
31	Evolution map of the memristor: from pure capacitive state to resistive switching state. Nanoscale, 2019, 11, 17222-17229.	5.6	45
32	Efficient and Stable Planar nâ€iâ€p Perovskite Solar Cells with Negligible Hysteresis through Solutionâ€Processed Cu ₂ O Nanocubes as a Low ost Holeâ€Transport Material. ChemSusChem, 2019, 12, 3808-3816.	6.8	45
33	High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Applied Materials & Interfaces, 2019, 11, 22021-22027.	8.0	80
34	Nuclei position-control and crystal growth-guidance on frozen substrates for high-performance perovskite solar cells. Nanoscale, 2019, 11, 12108-12115.	5.6	10
35	Robust perovskite-based triboelectric nanogenerator enhanced by broadband light and interface engineering. Journal of Materials Science, 2019, 54, 9004-9016.	3.7	46
36	Photoinduced triboelectric polarity reversal and enhancement of a new metal/semiconductor triboelectric nanogenerator. Nano Energy, 2019, 58, 331-337.	16.0	39

#	Article	IF	CITATIONS
37	Coexistence of Negative Differential Resistance and Resistive Switching Memory at Room Temperature in TiO <i>_x</i> Modulated by Moisture. Advanced Electronic Materials, 2018, 4, 1700567.	5.1	147
38	Enhancing the open circuit voltage of PEDOT:PSS-PC61BM based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing PC61BM. Organic Electronics, 2018, 59, 260-265.	2.6	14
39	A novel retractable spring-like-electrode triboelectric nanogenerator with highly-effective energy harvesting and conversion for sensing road conditions. RSC Advances, 2017, 7, 50993-51000.	3.6	15