Yiing Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1636493/publications.pdf

Version: 2024-02-01

126907 223800 4,492 47 33 46 citations h-index g-index papers 49 49 49 4033 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Arabidopsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis. Cell, 2005, 120, 687-700.	28.9	517
2	A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. Journal of Cell Biology, 2005, 169, 127-138.	5.2	314
3	Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 185-190.	7.1	275
4	Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12866-12871.	7.1	228
5	Members of a Novel Class of Arabidopsis Rho Guanine Nucleotide Exchange Factors Control Rho GTPase-Dependent Polar Growth. Plant Cell, 2006, 18, 366-381.	6.6	220
6	Oscillatory ROP GTPase Activation Leads the Oscillatory Polarized Growth of Pollen Tubes. Molecular Biology of the Cell, 2005, 16, 5385-5399.	2.1	197
7	A Genome-Wide Analysis of Arabidopsis Rop-Interactive CRIB Motif–Containing Proteins That Act as Rop GTPase Targets. Plant Cell, 2001, 13, 2841-2856.	6.6	174
8	Cell Wall, Cytoskeleton, and Cell Expansion in Higher Plants. Molecular Plant, 2014, 7, 586-600.	8.3	172
9	ROP/RAC GTPase: an old new master regulator for plant signaling. Current Opinion in Plant Biology, 2004, 7, 527-536.	7.1	156
10	Phosphatidic Acid Induces Leaf Cell Death in Arabidopsis by Activating the Rho-Related Small G Protein GTPase-Mediated Pathway of Reactive Oxygen Species Generation. Plant Physiology, 2004, 134, 129-136.	4.8	151
11	ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. Journal of Experimental Botany, 2003, 54, 93-101.	4.8	149
12	The Endocytosis of Cellulose Synthase in Arabidopsis Is Dependent on $\hat{1}/42$, a Clathrin-Mediated Endocytosis Adaptin \hat{A} \hat{A} . Plant Physiology, 2013, 163, 150-160.	4.8	145
13	Anticancer Peptidylarginine Deiminase (PAD) Inhibitors Regulate the Autophagy Flux and the Mammalian Target of Rapamycin Complex 1 Activity. Journal of Biological Chemistry, 2012, 287, 25941-25953.	3.4	133
14	AtPRK2 Promotes ROP1 Activation via RopGEFs in the Control of Polarized Pollen Tube Growth. Molecular Plant, 2013, 6, 1187-1201.	8.3	130
15	Cellulose Synthesis and Its Regulation. The Arabidopsis Book, 2014, 12, e0169.	0.5	119
16	Complexes with Mixed Primary and Secondary Cellulose Synthases Are Functional in Arabidopsis Plants Â. Plant Physiology, 2012, 160, 726-737.	4.8	95
17	Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11348-11353.	7.1	86
18	RIP1 (ROP Interactive Partner 1)/ICR1 Marks Pollen Germination Sites and May Act in the ROP1 Pathway in the Control of Polarized Pollen Growth. Molecular Plant, 2008, 1, 1021-1035.	8.3	85

#	Article	IF	Citations
19	CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3578-E3587.	7.1	85
20	The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12870-12875.	7.1	80
21	Indaziflam Herbicidal Action: A Potent Cellulose Biosynthesis Inhibitor Â. Plant Physiology, 2014, 166, 1177-1185.	4.8	75
22	Cellulose Synthase Complexes: Composition and Regulation. Frontiers in Plant Science, 2012, 3, 75.	3.6	67
23	CELLULOSE SYNTHASE INTERACTIVE3 Regulates Cellulose Biosynthesis in Both a Microtubule-Dependent and Microtubule-Independent Manner in <i>Arabidopsi</i> Â <i>s</i> Â <i. 2014,="" 25,="" 4912-4923.<="" cell,="" plant="" td=""><td>6.6</td><td>63</td></i.>	6.6	63
24	The <i>jiaoyao1 </i> Mutant Is an Allele of <i>korrigan1 </i> That Abolishes Endoglucanase Activity and Affects the Organization of Both Cellulose Microfibrils and Microtubules in <i>Arabidopsis </i> \hat{A} \hat{A} . Plant Cell, 2014, 26, 2601-2616.	6.6	63
25	The trafficking of the cellulose synthase complex in higher plants. Annals of Botany, 2014, 114, 1059-1067.	2.9	61
26	CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis. Plant Cell, 2015, 27, tpc.15.00442.	6.6	57
27	Prefoldin 6 is required for normal microtubule dynamics and organization in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18064-18069.	7.1	56
28	Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis. Plant Physiology, 2016, 171, 215-229.	4.8	56
29	Impact of acidic pH on plant cell wall polysaccharide structure and dynamics: insights into the mechanism of acid growth in plants from solid-state NMR. Cellulose, 2019, 26, 291-304.	4.9	56
30	The <i>Arabidopsis</i> Small G Protein ROP2 Is Activated by Light in Guard Cells and Inhibits Light-Induced Stomatal Opening. Plant Cell, 2008, 20, 75-87.	6.6	55
31	ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells. Molecular Cancer Therapeutics, 2015, 14, 877-888.	4.1	55
32	Cellulose synthase interactive protein 1 (CSI1) mediates the intimate relationship between cellulose microfibrils and cortical microtubules. Plant Signaling and Behavior, 2012, 7, 714-718.	2.4	38
33	Cellulose synthase interacting protein. Plant Signaling and Behavior, 2010, 5, 1571-1574.	2.4	36
34	Cell biology of primary cell wall synthesis in plants. Plant Cell, 2022, 34, 103-128.	6.6	36
35	Microtubules and cellulose biosynthesis: the emergence of new players. Current Opinion in Plant Biology, 2015, 28, 76-82.	7.1	34
36	Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules. Frontiers in Plant Science, 2014, 5, 90.	3.6	28

#	Article	IF	CITATIONS
37	A historical perspective on the regulation of cellulose biosynthesis. Carbohydrate Polymers, 2021, 252, 117022.	10.2	28
38	Functional analysis of complexes with mixed primary and secondary cellulose synthases. Plant Signaling and Behavior, 2013, 8, e23179.	2.4	27
39	Making parallel lines meet. Cell Adhesion and Migration, 2012, 6, 404-408.	2.7	22
40	Cellulose synthase interactive 1- and microtubule-dependent cell wall architecture is required for acid growth in Arabidopsis hypocotyls. Journal of Experimental Botany, 2020, 71, 2982-2994.	4.8	18
41	Distinguishing Mesoscale Polar Order (Unidirectional vs Bidirectional) of Cellulose Microfibrils in Plant Cell Walls Using Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 8071-8081.	2.6	13
42	Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting. PLoS ONE, 2014, 9, e95245.	2.5	12
43	The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators. Frontiers in Biology, 2011, 6, 377-383.	0.7	7
44	Using the Split-Ubiquitin Yeast Two-Hybrid System to Test Protein–Protein Interactions of Transmembrane Proteins. Methods in Molecular Biology, 2015, 1242, 143-158.	0.9	5
45	Cellulose and Hemicellulose Synthesis and Their Regulation in Plant Cells. Biologically-inspired Systems, 2019, , 303-353.	0.2	4
46	Disruption of Very-Long-Chain-Fatty Acid Synthesis Has an Impact on the Dynamics of Cellulose Synthase in Arabidopsis thaliana. Plants, 2020, 9, 1599.	3.5	3
47	Chimeric blood vessels sustained development of the xenogeneic antler: a unique model for xenogeneic organ generation., 2023, 2,.		3