Ruihua Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1636195/publications.pdf

Version: 2024-02-01

933447 888059 21 297 10 17 h-index citations g-index papers 21 21 21 300 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2024-2066.	2.4	5
2	Synthesis of Coumarin Derivatives: A New Class of Coumarin-Based G Protein-Coupled Receptor Activators and Inhibitors. Polymers, 2022, 14, 2021.	4.5	4
3	Progress in Isoindolone Alkaloid Derivatives from Marine Microorganism: Pharmacology, Preparation, and Mechanism. Marine Drugs, 2022, 20, 405.	4.6	9
4	Synthesis and Bioactivities of Marine Pyran-Isoindolone Derivatives as Potential Antithrombotic Agents. Marine Drugs, 2021, 19, 218.	4.6	6
5	Evaluation of $\hat{l}\pm$ -Chitosan from Crab Shell and \hat{l}^2 -Chitosan from Squid Gladius Based on Biochemistry Performance. Applied Sciences (Switzerland), 2021, 11, 3183.	2.5	9
6	Novel Bioactive Polyketides Isolated from Marine Actinomycetes: An Update Review from 2013 to 2019. Chemistry and Biodiversity, 2020, 17, e2000562.	2.1	12
7	Epigenetic Input Dictates the Threshold of Targeting of the Integrin-Dependent Pathway in Non-small Cell Lung Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 652.	3.7	10
8	Syntheses and evaluation of daphnetin derivatives as novel G protein-coupled receptor inhibitors and activators. Bioorganic Chemistry, 2020, 104, 104342.	4.1	11
9	Recent Advances on Marine Alkaloids from Sponges. Chemistry and Biodiversity, 2020, 17, e2000186.	2.1	20
10	Structure-Activity Relationships of Natural and Synthetic Indole-Derived Scaffolds as α-Glucosidase Inhibitors: A Mini-Review. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1791-1818.	2.4	18
11	Structure-activity relationship and synthetic methodologies of $\hat{l}\pm$ -santonin derivatives with diverse bioactivities: A mini-review. European Journal of Medicinal Chemistry, 2019, 175, 215-233.	5.5	24
12	Syntheses and bioactivities of songorine derivatives as novel G protein-coupled receptor antagonists. Bioorganic and Medicinal Chemistry, 2019, 27, 1903-1910.	3.0	9
13	Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen. Journal of Bioscience and Bioengineering, 2019, 128, 234-240.	2.2	59
14	A Novel Effect of Lipids Extracted from Vernix Caseosa on Regulation of Filaggrin Expression in Human Epidermal Keratinocytes. Annals of Dermatology, 2019, 31, 611.	0.9	4
15	Evaluation of Marine Diindolinonepyrane in Vitro and in Vivo: Permeability Characterization in Caco-2 Cells Monolayer and Pharmacokinetic Properties in Beagle Dogs. Marine Drugs, 2019, 17, 651.	4.6	5
16	A marine fibrinolytic compound FGFC1 stimulating enzymatic kinetic parameters of a reciprocal activation system based on a single chain urokinase-type plasminogen activator and plasminogen. Process Biochemistry, 2018, 68, 190-196.	3.7	8
17	Cross-talk between primary osteocytes and bone marrow macrophages for osteoclastogenesis upon collagen treatment. Scientific Reports, 2018, 8, 5318.	3.3	17
18	Improving Thermal and Flame Retardant Properties of Epoxy Resin with Organic NiFeâ€Layered Double Hydroxideâ€Carbon Nanotubes Hybrids. Chinese Journal of Chemistry, 2017, 35, 1875-1880.	4.9	27

Ruihua Guo

#	Article	IF	CITATION
19	Two New <scp>C₁₉</scp> â€Diterpenoid Alkaloids with Antiâ€inflammatory Activity from <i>Activity from <i>Activity</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	4.9	17
20	Fibrinolytic Evaluation of Compounds Isolated from a Marine Fungus <i>Stachybotrys longispora</i> FG216. Chinese Journal of Chemistry, 2016, 34, 1194-1198.	4.9	9
21	Identification and Fibrinolytic Evaluation of an Isoindolone Derivative Isolated from a Rare Marine Fungus <i>Stachybotrys longispora</i> FG216. Chinese Journal of Chemistry, 2015, 33, 1089-1095.	4.9	14