List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1635983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO2 adsorption by organohydrotalcites at low temperatures and high pressure. Chemical Engineering Journal, 2022, 431, 134324.	6.6	9
2	Use of carbonated water to improve the mechanical properties and reduce the carbon footprint of cement-based materials with recycled aggregates. Journal of CO2 Utilization, 2022, 57, 101886.	3.3	19
3	Specialized concrete made of processed biomass ash: lightweight, self-compacting, and geopolymeric concrete. , 2022, , 199-239.		Ο
4	The Performance of Concrete Made with Secondary Products—Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix. Materials, 2022, 15, 1438.	1.3	17
5	Performance of Sustainable Mortars Made with Filler from Different Construction By-Products. Materials, 2022, 15, 2636.	1.3	1
6	Effect of reactive magnesium oxide in alkali-activated fly ash mortars exposed to accelerated CO2 curing. Construction and Building Materials, 2022, 342, 127999.	3.2	11
7	Use of Carbonated Water as Kneading in Mortars Made with Recycled Aggregates. Materials, 2022, 15, 4876.	1.3	6
8	Review of the Application of Hydrotalcite as CO2 Sinks for Climate Change Mitigation. ChemEngineering, 2022, 6, 50.	1.0	3
9	Leaching behaviour of stabilised expansive soil with biomass bottom ashes as eco-agents. Biomass Conversion and Biorefinery, 2021, 11, 715-725.	2.9	1
10	Effect of moderate temperatures on compressive strength of ultra-high-performance concrete: A microstructural analysis. Cement and Concrete Research, 2021, 140, 106303.	4.6	35
11	Mitigation of CO2 emissions by hydrotalcites of Mg3Al-CO3 at 0°C and high pressure. Applied Clay Science, 2021, 202, 105950.	2.6	7
12	Feasible Use of Recycled Concrete Aggregates with Alumina Waste in Road Construction. Materials, 2021, 14, 1466.	1.3	4
13	The combined effect of CO2 and calcined hydrotalcite on one-coat limestone mortar properties. Construction and Building Materials, 2021, 280, 122532.	3.2	17
14	Accelerated carbonation of fresh cement-based products containing recycled masonry aggregates for CO2 sequestration. Journal of CO2 Utilization, 2021, 46, 101461.	3.3	36
15	Potential CO2 capture in one-coat limestone mortar modified with Mg3Al–CO3 calcined hydrotalcites using ultrafast testing technique. Chemical Engineering Journal, 2021, 415, 129077.	6.6	17
16	Optimisation of mortar with Mg-Al-Hydrotalcite as sustainable management strategy lead waste. Applied Clay Science, 2021, 212, 106218.	2.6	5
17	Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. Journal of Building Engineering, 2021, 44, 103317.	1.6	24
18	Normative review and necessary advances to promote the use of recycled aggregates and by-products		3

in cement-based materials. , 2021, , 735-776.

#	Article	IF	CITATIONS
19	Preliminary Study of Recycled Aggregate Mortar for Electric Arc Furnace Dust Encapsulation. Applied Sciences (Switzerland), 2021, 11, 9525.	1.3	2
20	Self-Compacting Recycled Concrete Using Biomass Bottom Ash. Materials, 2021, 14, 6084.	1.3	10
21	A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete. Applied Sciences (Switzerland), 2021, 11, 11077.	1.3	13
22	Effect of the Composition of Mixed Recycled Aggregates on Physical–Mechanical Properties. Crystals, 2021, 11, 1518.	1.0	6
23	Promotion of circular economy: steelwork dusts as secondary raw material in conventional mortars. Environmental Science and Pollution Research, 2020, 27, 89-100.	2.7	15
24	Feasibility study of roller compacted concrete with recycled aggregates as base layer for light-traffic roads. Road Materials and Pavement Design, 2020, 21, 276-288.	2.0	21
25	Real-scale study of a heavy traffic road built with in situ recycled demolition waste. Journal of Cleaner Production, 2020, 248, 119219.	4.6	11
26	Eco-Efficient Cement-Based Materials Using Biomass Bottom Ash: A Review. Applied Sciences (Switzerland), 2020, 10, 8026.	1.3	18
27	Complete Real-Scale Application of Recycled Aggregates in a Port Loading Platform in Huelva, Spain. Materials, 2020, 13, 2651.	1.3	4
28	Performance of self-compacting mortars with granite sludge as aggregate. Construction and Building Materials, 2020, 251, 118998.	3.2	27
29	Feasible use of colliery spoils as subbase layer for low-traffic roads. Construction and Building Materials, 2019, 229, 116910.	3.2	9
30	The Influence of Heat and Mechanical Treatment of Concrete Rubble on the Properties of Recycled Aggregate Concrete. Materials, 2019, 12, 367.	1.3	53
31	A Double Barrier Technique with Hydrotalcites for Pb Immobilisation from Electric Arc Furnace Dust. Materials, 2019, 12, 633.	1.3	8
32	Performance and durability properties of self-compacting mortars with electric arc furnace dust as filler. Journal of Cleaner Production, 2019, 219, 818-832.	4.6	35
33	Construction and demolition waste. , 2019, , 1-22.		11
34	Real-scale applications of recycled aggregate concrete. , 2019, , 573-589.		8
35	Biomass fly ash and biomass bottom ash. , 2019, , 23-58.		20
36	Leaching issues in recycled aggregate concrete. , 2019, , 329-356.		2

#	Article	IF	CITATIONS
37	Safe use of electric arc furnace dust as secondary raw material in self-compacting mortars production. Journal of Cleaner Production, 2019, 211, 1375-1388.	4.6	32
38	Mechanical and durability behaviour of self-compacting concretes for application in the manufacture of hazardous waste containers. Construction and Building Materials, 2018, 168, 442-458.	3.2	14
39	Recycling screening waste and recycled mixed aggregates from construction and demolition waste in paved bike lanes. Journal of Cleaner Production, 2018, 190, 211-220.	4.6	22
40	Functional and structural parameters of a paved road section constructed with mixed recycled aggregates from non-selected construction and demolition waste with excavation soil. Construction and Building Materials, 2018, 164, 57-69.	3.2	47
41	Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste. Environmental Science and Pollution Research, 2018, 25, 36024-36034.	2.7	28
42	Durability of self-compacting concrete made with recovery filler from hot-mix asphalt plants. Construction and Building Materials, 2018, 161, 407-419.	3.2	22
43	Promotion of Circular Economy: Steelwork Dusts as Secondary Raw Material in Conventional Mortars. Proceedings (mdpi), 2018, 2, .	0.2	1
44	Catalogue of Pavements with Recycled Aggregates from Construction and Demolition Waste. Proceedings (mdpi), 2018, 2, .	0.2	10
45	Durability of self-compacting concrete made from non-conforming fly ash from coal-fired power plants. Construction and Building Materials, 2018, 189, 993-1006.	3.2	22
46	Mechanical behaviour of self-compacting concrete made with non-conforming fly ash from coal-fired power plants. Construction and Building Materials, 2018, 182, 385-398.	3.2	22
47	Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization. Materials, 2018, 11, 453.	1.3	14
48	The role of pH on leaching of heavy metals and chlorides from electric arc furnace dust in cement-based mortars. Construction and Building Materials, 2018, 183, 365-375.	3.2	35
49	MOTIVATION OF STUDENTS THROUGH THE GAMIFICATION TECHNIQUE IN THE SUBJECT OF THEORY OF STRUCTURES. INTED Proceedings, 2018, , .	0.0	0
50	Effects of treatments on biomass bottom ash applied to the manufacture of cement mortars. Journal of Cleaner Production, 2017, 154, 424-435.	4.6	58
51	Potential use of modified hydrotalcites as adsorbent of Bentazon and Metazachlor. Applied Clay Science, 2017, 141, 300-307.	2.6	24
52	Experimental study of the mechanical stabilization of electric arc furnace dust using fluid cement mortars. Journal of Hazardous Materials, 2017, 326, 26-35.	6.5	30
53	Mechanical behaviour of self-compacting concrete made with recovery filler from hot-mix asphalt plants. Construction and Building Materials, 2017, 131, 114-128.	3.2	40
54	Reduction of Leaching Impacts by Applying Biomass Bottom Ash and Recycled Mixed Aggregates in Structural Layers of Roads. Materials, 2016, 9, 228.	1.3	24

#	Article	IF	CITATIONS
55	Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content. Materials, 2016, 9, 74.	1.3	26
56	Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete. Materials, 2016, 9, 91.	1.3	10
57	Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties. Materials, 2016, 9, 729.	1.3	12
58	Feasibility of Using Unbound Mixed Recycled Aggregates from CDW over Expansive Clay Subgrade in Unpaved Rural Roads. Materials, 2016, 9, 931.	1.3	26
59	Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers. Materials, 2016, 9, 98.	1.3	79
60	Mechanical performance of bedding mortars made with olive biomass bottom ash. Construction and Building Materials, 2016, 112, 699-707.	3.2	59
61	Effect of powdered mixed recycled aggregates on bedding mortar properties. European Journal of Environmental and Civil Engineering, 2016, 20, s1-s17.	1.0	9
62	A proposal for the maximum use of recycled concrete sand in masonry mortar design. Materiales De Construccion, 2016, 66, e075.	0.2	24
63	Improvement of Bearing Capacity in Recycled Aggregates Suitable for Use as Unbound Road Sub-Base. Materials, 2015, 8, 8804-8816.	1.3	18
64	Rheological behaviour of concrete made with fine recycled concrete aggregates – Influence of the superplasticizer. Construction and Building Materials, 2015, 89, 36-47.	3.2	140
65	Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results. Waste Management, 2015, 46, 278-286.	3.7	31
66	Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production – Part-I: ceramic masonry waste. Journal of Cleaner Production, 2015, 87, 692-706.	4.6	116
67	Regularidad superficial y adherencia en vÃas ciclistas - recomendaciones de diseño disponibles. Informes De La Construccion, 2015, 67, e124.	0.1	Ο
68	Characterisation and technical feasibility of using biomass bottom ash for civil infrastructures. Construction and Building Materials, 2014, 58, 234-244.	3.2	69
69	Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Construction and Building Materials, 2014, 72, 231-238.	3.2	72
70	Properties of masonry mortars manufactured with fine recycled concrete aggregates. Construction and Building Materials, 2014, 71, 289-298.	3.2	85
71	The effect of compaction on the leaching and pollutant emission time of recycled aggregates from construction and demolition waste. Journal of Cleaner Production, 2014, 83, 294-304.	4.6	48
72	Effect of cement addition on the properties of recycled concretes to reach control concretes strengths. Journal of Cleaner Production, 2014, 79, 124-133.	4.6	91

#	Article	IF	CITATIONS
73	Influence of water-reducing admixtures on the mechanical performance of recycled concrete. Journal of Cleaner Production, 2013, 59, 93-98.	4.6	173
74	Application of cement-treated recycled materials in the construction of a section of road in Malaga, Spain. Construction and Building Materials, 2013, 44, 593-599.	3.2	59
75	Analysis of leaching procedures for environmental risk assessment of recycled aggregate use in unpaved roads. Construction and Building Materials, 2013, 40, 1207-1214.	3.2	55
76	Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Construction and Building Materials, 2013, 40, 679-690.	3.2	158
77	Recycled aggregates (RAs) for roads. , 2013, , 351-377.		12
78	Comparison of batch leaching tests and influence of pH on the release of metals from construction and demolition wastes. Waste Management, 2012, 32, 88-95.	3.7	68
79	Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes. Waste Management, 2012, 32, 1229-1235.	3.7	67
80	Statistical analysis of recycled aggregates derived from different sources for sub-base applications. Construction and Building Materials, 2012, 28, 129-138.	3.2	118
81	Use of mixed recycled aggregates with a low embodied energy from non-selected CDW in unpaved rural roads. Construction and Building Materials, 2012, 34, 34-43.	3.2	69
82	Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resources, Conservation and Recycling, 2012, 58, 88-97.	5.3	136
83	Construction of road sections using mixed recycled aggregates treated with cement in Malaga, Spain. Resources, Conservation and Recycling, 2012, 58, 98-106.	5.3	116
84	A new equation to predict the footings settlement on sand based on the finite element method. Spanish Journal of Agricultural Research, 2012, 10, 967.	0.3	0
85	Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Construction and Building Materials, 2011, 25, 3950-3955.	3.2	181
86	Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 2011, 33, 788-795.	4.6	469
87	Estudio comparativo de los Ã _i ridos reciclados de hormigón y mixtos como material para sub-bases de carreteras. Materiales De Construccion. 2011. 61. 289-302.	0.2	62