

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163576/publications.pdf Version: 2024-02-01

LEI SU

#	Article	IF	CITATIONS
1	An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nature Communications, 2020, 11, 1735.	5.8	343
2	Adsorption of Methylene Blue Dye onto Carbon Nanotubes:Â A Route to an Electrochemically Functional Nanostructure and Its Layer-by-Layer Assembled Nanocomposite. Chemistry of Materials, 2005, 17, 3457-3463.	3.2	340
3	Electrochemistry and Electroanalytical Applications of Carbon Nanotubes: A Review. Analytical Sciences, 2005, 21, 1383-1393.	0.8	289
4	Carbon-Nanotube-Based Glucose/O2 Biofuel Cells. Advanced Materials, 2006, 18, 2639-2643.	11.1	244
5	Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Analytical Chemistry, 2007, 79, 6559-6565.	3.2	225
6	Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon, 2006, 44, 276-283.	5.4	222
7	Aptamer-Based Electrochemical Sensors with Aptamerâ~'Complementary DNA Oligonucleotides as Probe. Analytical Chemistry, 2008, 80, 1883-1890.	3.2	203
8	Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Analytical Chemistry, 2019, 91, 14803-14807.	3.2	176
9	Polymer-Assisted Synthesis of Manganese Dioxide/Carbon Nanotube Nanocomposite with Excellent Electrocatalytic Activity toward Reduction of Oxygen. Journal of Physical Chemistry C, 2007, 111, 1882-1887.	1.5	167
10	Artificial intelligence biosensors: Challenges and prospects. Biosensors and Bioelectronics, 2020, 165, 112412.	5.3	153
11	Solâ^'Gel-Derived Ceramicâ^'Carbon Nanotube Nanocomposite Electrodes:  Tunable Electrode Dimension and Potential Electrochemical Applications. Analytical Chemistry, 2004, 76, 6500-6505.	3.2	143
12	Molecular Films of Water-Miscible Ionic Liquids Formed on Glassy Carbon Electrodes:Â Characterization and Electrochemical Applications. Langmuir, 2005, 21, 9000-9006.	1.6	137
13	An enzymatic glucose/O2 biofuel cell: Preparation, characterization and performance in serum. Electrochemistry Communications, 2007, 9, 989-996.	2.3	136
14	Strong Antibacterial Polydopamine Coatings Prepared by a Shaking-assisted Method. Scientific Reports, 2016, 6, 24420.	1.6	130
15	Continuous On-Line Monitoring of Extracellular Ascorbate Depletion in the Rat Striatum Induced by Global Ischemia with Carbon Nanotube-Modified Glassy Carbon Electrode Integrated into a Thin-Layer Radial Flow Cell. Analytical Chemistry, 2005, 77, 6234-6242.	3.2	125
16	Direct Electrochemistry of Multi-Copper Oxidases at Carbon Nanotubes Noncovalently Functionalized with Cellulose Derivatives. Electroanalysis, 2006, 18, 587-594.	1.5	117
17	Bioelectrochemically Functional Nanohybrids through Co-Assembling of Proteins and Surfactants onto Carbon Nanotubes:  Facilitated Electron Transfer of Assembled Proteins with Enhanced Faradic Response. Langmuir, 2005, 21, 6560-6566.	1.6	115
18	Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2018, 260, 346-356.	4.0	112

#	Article	IF	CITATIONS
19	Physiologically Relevant Online Electrochemical Method for Continuous and Simultaneous Monitoring of Striatum Glucose and Lactate Following Global Cerebral Ischemia/Reperfusion. Analytical Chemistry, 2009, 81, 2067-2074.	3.2	108
20	Electrochemical Properties of Carbon Nanotube (CNT) Film Electrodes Prepared by Controllable Adsorption of CNTs onto an Alkanethiol Monolayer Self-Assembled on Gold Electrodes. Analytical Chemistry, 2006, 78, 2651-2657.	3.2	101
21	Intramolecular Electron Transfer within the Substituted Tetrathiafulvaleneâ `Quinone Dyads:Â Facilitated by Metal Ion and Photomodulation in the Presence of Spiropyran. Journal of the American Chemical Society, 2007, 129, 6839-6846.	6.6	95
22	A Miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate. Electrochemistry Communications, 2008, 10, 851-854.	2.3	83
23	The role of NO in COVID-19 and potential therapeutic strategies. Free Radical Biology and Medicine, 2021, 163, 153-162.	1.3	82
24	Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochimica Acta, 2007, 52, 4144-4152.	2.6	81
25	Efficient synergy of photocatalysis and adsorption of hexavalent chromium and rhodamine B over Al4SiC4/rGO hybrid photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental, 2019, 241, 548-560.	10.8	79
26	Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosensors and Bioelectronics, 2022, 196, 113760.	5.3	74
27	Role of Organic Solvents in Immobilizing Fungus Laccase on Single-Walled Carbon Nanotubes for Improved Current Response in Direct Bioelectrocatalysis. Journal of the American Chemical Society, 2017, 139, 1565-1574.	6.6	71
28	Electrochemical Sensors for Nitric Oxide Detection in Biological Applications. Electroanalysis, 2014, 26, 449-468.	1.5	65
29	Rational Functionalization of Carbon Nanotube/Ionic Liquid Bucky Gel with Dual Tailor-Made Electrocatalysts for Four-Electron Reduction of Oxygen. Journal of Physical Chemistry C, 2008, 112, 2177-2182.	1.5	64
30	Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA. Biosensors and Bioelectronics, 2010, 25, 1498-1503.	5.3	64
31	Noncovalent Attachment of NAD ⁺ Cofactor onto Carbon Nanotubes for Preparation of Integrated Dehydrogenase-Based Electrochemical Biosensors. Langmuir, 2010, 26, 6028-6032.	1.6	61
32	Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. Biosensors and Bioelectronics, 2015, 66, 155-161.	5.3	58
33	A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine. Biosensors and Bioelectronics, 2010, 25, 1350-1355.	5.3	57
34	Oxidase-mimicking activity of the nitrogen-doped Fe ₃ C@C composites. Chemical Communications, 2017, 53, 3882-3885.	2.2	57
35	A Miniature Glucose/O ₂ Biofuel Cell With a High Tolerance Against Ascorbic Acid. Fuel Cells, 2009, 9, 85-91.	1.5	56
36	Gold nanoparticle/alkanedithiol conductive films self-assembled onto gold electrode: Electrochemistry and electroanalytical application for voltammetric determination of trace amount of catechol. Talanta. 2006, 70, 68-74.	2.9	53

#	Article	IF	CITATIONS
37	Core@Satellite Janus Nanomotors with pHâ€Responsive Multiâ€phoretic Propulsion. Angewandte Chemie - International Edition, 2020, 59, 14368-14372.	7.2	52
38	Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection. Neurochemistry International, 2008, 52, 1247-1255.	1.9	51
39	The Food Colloid Principle in the Design of Elderly Food. Journal of Texture Studies, 2016, 47, 284-312.	1.1	51
40	Effective Electrochemical Method for Investigation of Hemoglobin Unfolding Based on the Redox Property of Heme Groups at Glassy Carbon Electrodes. Analytical Chemistry, 2009, 81, 8557-8563.	3.2	50
41	Discovery of carbon-based strongest and hardest amorphous material. National Science Review, 2022, 9, nwab140.	4.6	49
42	Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor. Analytical Chemistry, 2016, 88, 6071-6077.	3.2	48
43	An electrochemical wearable sensor for levodopa quantification in sweat based on a metal–Organic framework/graphene oxide composite with integrated enzymes. Sensors and Actuators B: Chemical, 2022, 359, 131586.	4.0	48
44	Luminescent wearable biosensors based on gold nanocluster networks for "turn-on―detection of Uric acid, glucose and alcohol in sweat. Biosensors and Bioelectronics, 2021, 192, 113530.	5.3	45
45	Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+-sensor. Biosensors and Bioelectronics, 2013, 44, 16-20.	5.3	44
46	Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes. Analyst, The, 2014, 139, 1127.	1.7	44
47	Chemical Etching of Bovine Serum Albumin-Protected Au25 Nanoclusters for Label-Free and Separation-Free Ratiometric Fluorescent Detection of Tris(2-carboxyethyl)phosphine. Analytical Chemistry, 2016, 88, 11193-11198.	3.2	44
48	Rational Functionalization of Carbon Nanotubes Leading to Electrochemical Devices with Striking Applications. Advanced Materials, 2008, 20, 2899-2906.	11.1	43
49	Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission. International Journal of Molecular Sciences, 2019, 20, 1891.	1.8	41
50	Luminescent Covalent Organic Frameworks for Biosensing and Bioimaging Applications. Small, 2022, 18, e2103516.	5.2	39
51	Dual-emissive gold nanoclusters for label-free and separation-free ratiometric fluorescence sensing of 4-nitrophenol based on the inner filter effect. Journal of Materials Chemistry C, 2018, 6, 5033-5038.	2.7	38
52	pH-Responsive aggregation-induced emission of Au nanoclusters and crystallization of the Au(<scp>i</scp>)–thiolate shell. Materials Chemistry Frontiers, 2018, 2, 923-928.	3.2	37
53	Dendritic Silica Particles with Well-Dispersed Ag Nanoparticles for Robust Antireflective and Antibacterial Nanocoatings on Polymeric Glass. ACS Sustainable Chemistry and Engineering, 2018, 6, 14071-14081.	3.2	37
54	Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine. Nanoscale, 2019, 11, 294-300.	2.8	37

#	Article	IF	CITATIONS
55	Multi-Walled Carbon Nanotube-Based Glucose/O2 Biofuel Cell with Glucose Oxidase and Laccase as Biocatalysts. Journal of Nanoscience and Nanotechnology, 2007, 7, 1625-1630.	0.9	36
56	Mixed Monolayers of Ferrocenylalkanethiol and Encapsulated Horseradish Peroxidase for Sensitive and Durable Electrochemical Detection of Hydrogen Peroxide. Analytical Chemistry, 2009, 81, 9985-9992.	3.2	34
57	Rational Design of ZIF-8 for Constructing Luminescent Biosensors with Glucose Oxidase and AIE-Type Gold Nanoclusters. Analytical Chemistry, 2022, 94, 3408-3417.	3.2	34
58	In Situ Cationic Ring-Opening Polymerization and Quaternization Reactions To Confine Ferricyanide onto Carbon Nanotubes: A General Approach to Development of Integrative Nanostructured Electrochemical Biosensors. Analytical Chemistry, 2008, 80, 6587-6593.	3.2	33
59	Hidden Dityrosine Residues in Protein-Protected Gold Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 12065-12070.	1.5	32
60	Carbon nanotubes and manganese oxide hybrid nanostructures as high performance fiber supercapacitors. Communications Chemistry, 2018, 1, .	2.0	32
61	Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. Carbon, 2019, 154, 169-177.	5.4	32
62	Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals, 2020, 10, 357.	1.0	32
63	Preparation of hexagonal BN whiskers synthesized at low temperature and their application in fabricating an electrochemical nitrite sensor. RSC Advances, 2016, 6, 27767-27774.	1.7	31
64	Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA. Analytica Chimica Acta, 2009, 650, 44-48.	2.6	29
65	Substrate-independent and large-area synthesis of carbon nanotube thin films using ZnO nanorods as template and dopamine as carbon precursor. Carbon, 2015, 83, 275-281.	5.4	29
66	The Fe–N–C oxidase-like nanozyme used for catalytic oxidation of NOM in surface water. Water Research, 2020, 171, 115491.	5.3	29
67	Ion Permeability of Polydopamine Films Revealed Using a Prussian Blue-Based Electrochemical Method. Journal of Physical Chemistry B, 2014, 118, 12781-12787.	1.2	28
68	The effective determination of Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) simultaneously based on an aluminum silicon carbide-reduced graphene oxide nanocomposite electrode. Analyst, The, 2017, 142, 2741-2747.	1.7	28
69	Phonon anharmonicity in thermoelectric palladium sulfide by Raman spectroscopy. Applied Physics Letters, 2018, 113, .	1.5	27
70	A general electrochemical approach to deposition of metal hydroxide/oxide nanostructures onto carbon nanotubes. Electrochemistry Communications, 2008, 10, 761-765.	2.3	25
71	Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors. Biosensors and Bioelectronics, 2022, 198, 113830.	5.3	25
72	Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Analytica Chimica Acta, 2022, 1208, 339843.	2.6	25

#	Article	IF	CITATIONS
73	Voltammetric determination of water with inner potential reference and variable linear range based on structure- and redox-controllable hydrogen-bonding interaction between water and quinones. Electrochemistry Communications, 2009, 11, 808-811.	2.3	24
74	Effect of surface topology morphologies of silica nanocarriers on the loading of Ag nanoparticles and antibacterial performance. Journal of Alloys and Compounds, 2019, 783, 136-144.	2.8	24
75	An electrochemical sensor for 3,4-dihydroxyphenylacetic acid with carbon nanotubes as electronic transducer and synthetic cyclophane as recognition element. Chemical Communications, 2008, , 4330.	2.2	23
76	Serum nitrite and nitrate: A potential biomarker for post-covid-19 complications?. Free Radical Biology and Medicine, 2021, 175, 216-225.	1,3	23
77	Strategies of Luminescent Gold Nanoclusters for Chemo-/Bio-Sensing. Molecules, 2019, 24, 3045.	1.7	22
78	lonic Liquid-Assisted Preparation of Laccase-Based Biocathodes with Improved Biocompatibility. Journal of Physical Chemistry B, 2012, 116, 5185-5191.	1.2	21
79	Understanding stimuli-responsive oligomer shell of silver nanoclusters with aggregation-induced emission via chemical etching and their use as sensors. Sensors and Actuators B: Chemical, 2019, 286, 198-205.	4.0	21
80	pH-Responsive Au(<scp>i</scp>)-disulfide nanoparticles with tunable aggregation-induced emission for monitoring intragastric acidity. Chemical Science, 2020, 11, 6472-6478.	3.7	21
81	Femtoliter and Attoliter Electrochemical Cells on Chips. Analytical Chemistry, 2010, 82, 1521-1526.	3.2	20
82	Combination of chemical etching of gold nanoclusters with aggregation-induced emission for preparation of new phosphors for the development of UV-driven phosphor-converted white light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 11482-11487.	2.7	19
83	In Situ Synthesis of CuS Nanoparticle-Doped Poly(N-isopropylacrylamide)-Based Microgels for Near-Infrared Triggered Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 1776-1783.	2.4	19
84	An Aggregation-Induced Phosphorescence-Active "Turn-Off―Nanosensor Based on Ferric-Specific Quenching of Luminescent and Water-Soluble Au(I)–Cysteine Nanocomplexes. Analytical Chemistry, 2020, 92, 6785-6791.	3.2	18
85	A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes. Chemical Communications, 2018, 54, 818-820.	2.2	17
86	Aligned carbon nanotube modified carbon fibre coated with gold nanoparticles embedded in a polymer film: Voltammetric microprobe for enzymeless glucose sensing. Electrochemistry Communications, 2012, 25, 94-97.	2.3	16
87	An amperometric glucose enzyme biosensor based on porous hexagonal boron nitride whiskers decorated with Pt nanoparticles. RSC Advances, 2016, 6, 92748-92753.	1.7	16
88	Improved supercapacitors by implanting ultra-long single-walled carbon nanotubes into manganese oxide domains. Journal of Power Sources, 2020, 479, 228795.	4.0	16
89	Functional nucleic acid-based fluorescence polarization/anisotropy biosensors for detection of biomarkers. Analytical and Bioanalytical Chemistry, 2020, 412, 6655-6665.	1.9	15
90	Interaction processes of ciprofloxacin with graphene oxide and reduced graphene oxide in the presence of montmorillonite in simulated gastrointestinal fluids. Scientific Reports, 2017, 7, 2588.	1.6	14

#	Article	lF	CITATIONS
91	Thermoelectric properties of polycrystalline palladium sulfide. RSC Advances, 2018, 8, 13154-13158.	1.7	14
92	Rutheniumâ€based Conjugated Polymer and Metalâ€organic Framework Nanocomposites for Glucose Sensing. Electroanalysis, 2021, 33, 1902-1910.	1.5	14
93	Silver nanoparticle-loaded microgel-based etalons for H ₂ O ₂ sensing. RSC Advances, 2018, 8, 15567-15574.	1.7	13
94	Difluoromethyl Radical Triggered Tandem Reaction of <i>N</i> -Allyl Amides to Difluoromethylated β-Amino Alcohols by Photoredox Catalysis. Organic Letters, 2021, 23, 8482-8487.	2.4	13
95	Portable point-of-care diagnostic devices: an updated review. Analytical Methods, 2021, 13, 5418-5435.	1.3	13
96	Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials, 2022, 287, 121603.	5.7	13
97	On-line removal of redox-active interferents by a porous electrode before amperometric blood glucose determination. Analytica Chimica Acta, 2012, 719, 52-56.	2.6	12
98	Synthesis of Luminescent Gold Nanoclusters Embedded Goose Feathers for Facile Preparation of Au(I) Complexes with Aggregation-Induced Emission. ACS Sustainable Chemistry and Engineering, 2019, 7, 592-598.	3.2	12
99	Core@Satellite Janus Nanomotors with pHâ€Responsive Multiâ€phoretic Propulsion. Angewandte Chemie, 2020, 132, 14474-14478.	1.6	12
100	Time-Dependent Elastic Tensor of Cellulose Nanocrystal Probed by Hydrostatic Pressure and Uniaxial Stretching. Journal of Physical Chemistry Letters, 2021, 12, 3779-3785.	2.1	12
101	An oxygen tolerance conductive hydrogel anode membrane for use in a potentially implantable glucose fuel cell. RSC Advances, 2016, 6, 112971-112980.	1.7	11
102	In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement. International Journal of Biological Macromolecules, 2018, 112, 803-808.	3.6	11
103	Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission. Critical Reviews in Analytical Chemistry, 2018, 48, 330-336.	1.8	11
104	Exosomes-mediated synthetic Dicer substrates delivery for intracellular Dicer imaging detection. Biosensors and Bioelectronics, 2020, 151, 111907.	5.3	11
105	Using bimetallic Au/Cu nanoplatelets for construction of facile and label-free inner filter effect-based photoluminescence sensing platform for sarcosine detection. Analytica Chimica Acta, 2022, 1192, 339331.	2.6	10
106	Rational Design of "Three-in-One―Ratiometric Nanoprobes: Protein-Caged Dityrosine, CdS Quantum Dots, and Gold Nanoclusters. ACS Omega, 2020, 5, 8943-8951.	1.6	9
107	Compression Rate-Dependent Crystallization of Pyridine. Journal of Physical Chemistry C, 2021, 125, 6983-6989.	1.5	9
108	Facile and material-independent fabrication of poly(luteolin) coatings and their unimpaired antibacterial activity against Staphylococcus aureus after steam sterilization treatments. Polymer Chemistry, 2014, 5, 4211-4214.	1.9	8

#	Article	IF	CITATIONS
109	Preparation of catalytic films of the Au nanoparticle–carbon composite tubular arrays. Chemical Communications, 2015, 51, 6333-6336.	2.2	8
110	A titanium nitride nanotube array for potentiometric sensing of pH. Analyst, The, 2016, 141, 1693-1699.	1.7	8
111	In-Situ Observation of the Formation of Fibrous Sulfur under High Pressure. Journal of Physical Chemistry C, 2019, 123, 14696-14700.	1.5	8
112	Current control by electrode coatings formed by polymerization of dopamine at prussian blue-modified electrodes. Analyst, The, 2016, 141, 2067-2071.	1.7	7
113	Electrochemistry of rechargeable aqueous zinc/zinc-sulphate/manganese-oxide batteries and methods for preparation of high-performance cathodes. Journal of Materials Chemistry A, 2022, 10, 15415-15426.	5.2	6
114	Single-walled carbon nanotube ensembles modified gold ultramicroelectrodes prepared by self-assembly deposition method with 1-(1-pyrenyl)-1-methanethiol monolayer as an adhesion layer. Electrochemistry Communications, 2012, 20, 163-166.	2.3	5
115	Reverse-Bumpy-Ball-Type-Nanoreactor-Loaded Nylon Membranes as Peroxidase-Mimic Membrane Reactors for a Colorimetric Assay for H2O2. Sensors, 2016, 16, 465.	2.1	5
116	Fabrication and characterization of ultra light SiC whiskers decorated by RuO ₂ nanoparticles as hybrid supercapacitors. RSC Advances, 2016, 6, 19626-19631.	1.7	5
117	Strongly phosphorescent and water-soluble gold(I)-silver(I)-cysteine nanoplatelets via versatile small biomolecule cysteine-assisted synthesis for intracellular hypochlorite detection. Biosensors and Bioelectronics, 2021, 193, 113571.	5.3	5
118	Fluorescent Film Sensors Based on Fluorescent Gold and Silver Nanoclusters. Current Nanoscience, 2015, 11, 702-709.	0.7	5
119	Electrochemical sensing of ATP with synthetic cyclophane as recognition element. Science in China Series B: Chemistry, 2009, 52, 741-745.	0.8	4
120	In situ observation of gelation of methylcellulose aqueous solution with viscosity measuring instrument in the diamond anvil cell. Carbohydrate Polymers, 2018, 190, 190-195.	5.1	4
121	An Overview on Coinage Metal Nanocluster-Based Luminescent Biosensors via Etching Chemistry. Biosensors, 2022, 12, 511.	2.3	4
122	Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
123	Isothermally crystallization behavior of poly (Lâ€lactide) from melt under high pressure. Polymers for Advanced Technologies, 2018, 29, 3049-3055.	1.6	3
124	pH-Switchable electroactive composite films of carboxylated multi-walled carbon nanotubes and Prussian blue. RSC Advances, 2015, 5, 103184-103188.	1.7	2
125	Ionic Liquid: A Good Pressure Transmitting Medium. Journal of Solution Chemistry, 2017, 46, 3-10.	0.6	2
126	"Gold Inlaid with Hair†Permanent Fluorescent Hair Dyeing Using Fast Protein-Assisted Biomineralization of Gold Nanoclusters. ACS Sustainable Chemistry and Engineering, 2022, 10, 305-313.	3.2	2

#	Article	IF	CITATIONS
127	An electrochemical sensor based on ZIF-67/Ag nanoparticles (NPs)/polydopamine (PDA) nanocomposites for detecting chloride ion with good reproducibility. Journal of Electroanalytical Chemistry, 2022, , 116323.	1.9	2
128	Luminescent Sensors Based on the Assembly of Coinage Metal Nanoclusters. Chemosensors, 2022, 10, 253.	1.8	2
129	Template-assisted evaporation deposition of Au nanoparticles for fabrication of hierarchical porous Au film modified electrodes and their salt concentration-dependent capacitive current. Journal of Electroanalytical Chemistry, 2014, 714-715, 116-121.	1.9	1
130	Molecular Dual-Rotators with Large Consecutive Emission Chromism for Visualized and High-Pressure Sensing. ACS Omega, 2018, 3, 717-723.	1.6	1
131	An In situ Study on the Orderly Crystal Growth of Pluronic F127 Block Copolymer Blended with and without Ionic Liquid during Isothermal Crystallization. Polymer Science - Series A, 2018, 60, 381-390.	0.4	1
132	Detection of the effect of polydopamine (PDA)-coated polydimethylsiloxane (PDMS) substrates on the release of H2O2 from a single HeLa cell. Analyst, The, 2021, 146, 6445-6449.	1.7	0