
Diara A Santiago-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1635438/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conditional Deletion of the L-Type Calcium Channel Cav1.2 in Oligodendrocyte Progenitor Cells Affects Postnatal Myelination in Mice. Journal of Neuroscience, 2016, 36, 10853-10869.	1.7	74
2	Lâ€ŧype voltageâ€operated calcium channels contribute to astrocyte activation <i>In vitro</i> . Glia, 2016, 64, 1396-1415.	2.5	53
3	Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice. Journal of Neuroscience, 2017, 37, 10038-10051.	1.7	44
4	Deletion of Voltage-Gated Calcium Channels in Astrocytes during Demyelination Reduces Brain Inflammation and Promotes Myelin Regeneration in Mice. Journal of Neuroscience, 2020, 40, 3332-3347.	1.7	40
5	The Divalent Metal Transporter 1 (DMT1) Is Required for Iron Uptake and Normal Development of Oligodendrocyte Progenitor Cells. Journal of Neuroscience, 2018, 38, 9142-9159.	1.7	37
6	Muscarinic Receptor M ₃ R Signaling Prevents Efficient Remyelination by Human and Mouse Oligodendrocyte Progenitor Cells. Journal of Neuroscience, 2018, 38, 6921-6932.	1.7	27
7	Enhanced oligodendrocyte maturation and myelination in a mouse model of Timothy syndrome. Glia, 2018, 66, 2324-2339.	2.5	21
8	Impaired Postnatal Myelination in a Conditional Knockout Mouse for the Ferritin Heavy Chain in Oligodendroglial Cells. Journal of Neuroscience, 2020, 40, 7609-7624.	1.7	18
9	Iron Metabolism in the Peripheral Nervous System: The Role of DMT1, Ferritin, and Transferrin Receptor in Schwann Cell Maturation and Myelination. Journal of Neuroscience, 2019, 39, 9940-9953.	1.7	17
10	Hâ€ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination. Glia, 2021, 69, 2981-2998.	2.5	14