Malin Daase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1635433/publications.pdf Version: 2024-02-01

201385 223531 2,338 49 27 46 citations h-index g-index papers 50 50 50 1979 docs citations times ranked citing authors all docs

MALIN DAASE

#	Article	IF	CITATIONS
1	Modelling the biogeographic boundary shift of <i>Calanus finmarchicus</i> reveals drivers of Arctic Atlantification by subarctic zooplankton. Global Change Biology, 2022, 28, 429-440.	4.2	18
2	Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Ambio, 2022, 51, 333-344.	2.8	30
3	High abundances of small copepods early developmental stages and nauplii strengthen the perception of a non-dormant Arctic winter. Polar Biology, 2022, 45, 675-690.	0.5	6
4	Accounting for Uncertainties in Biodiversity Estimations: A New Methodology and Its Application to the Mesopelagic Sound Scattering Layer of the High Arctic. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	10
5	Contrasting Life Traits of Sympatric Calanus glacialis and C. finmarchicus in a Warming Arctic Revealed by a Year-Round Study in Isfjorden, Svalbard. Frontiers in Marine Science, 2022, 9, .	1.2	5
6	Seasonal variability in non-consumptive mortality of Arctic zooplankton. Journal of Plankton Research, 2021, 43, 565-585.	0.8	12
7	Pelagic organisms avoid white, blue, and red artificial light from scientific instruments. Scientific Reports, 2021, 11, 14941.	1.6	15
8	Seasonal Variability in the Zooplankton Community Structure in a Sub-Arctic Fjord as Revealed by Morphological and Molecular Approaches. Frontiers in Marine Science, 2021, 8, .	1.2	13
9	Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night. PLoS Biology, 2021, 19, e3001413.	2.6	10
10	Autonomous Surface and Underwater Vehicles as Effective Ecosystem Monitoring and Research Platforms in the Arctic—The Glider Project. Sensors, 2021, 21, 6752.	2.1	2
11	Ice-Associated Amphipods in a Pan-Arctic Scenario of Declining Sea Ice. Frontiers in Marine Science, 2021, 8, .	1.2	11
12	Eat or Sleep: Availability of Winter Prey Explains Mid-Winter and Spring Activity in an Arctic Calanus Population. Frontiers in Marine Science, 2020, 7, .	1.2	25
13	Pelagic occurrences of the ice amphipod Apherusa glacialis throughout the Arctic. Journal of Plankton Research, 2020, 42, 73-86.	0.8	16
14	Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Communications Biology, 2020, 3, 102.	2.0	44
15	Zooplankton in the Polar Night. Advances in Polar Ecology, 2020, , 113-159.	1.3	20
16	Zooplankton in Kongsfjorden (1996–2016) in Relation to Climate Change. Advances in Polar Ecology, 2019, , 229-300.	1.3	36
17	Autonomous surface and underwater vehicles reveal new discoveries in the Arctic Ocean. , 2019, , .		2
18	Mesopelagic Sound Scattering Layers of the High Arctic: Seasonal Variations in Biomass, Species Assemblage, and Trophic Relationships. Frontiers in Marine Science, 2019, 6, .	1.2	35

MALIN DAASE

#	Article	IF	CITATIONS
19	Remote sensing of zooplankton swarms. Scientific Reports, 2019, 9, 686.	1.6	40
20	Pelagic Ecosystem Characteristics Across the Atlantic Water Boundary Current From Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). Frontiers in Marine Science, 2019, 6, .	1.2	45
21	Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Science Advances, 2018, 4, eaap9887.	4.7	75
22	Can morphology reliably distinguish between the copepods <i>Calanus finmarchicus</i> and <i>C. glacialis</i> , or is DNA the only way?. Limnology and Oceanography: Methods, 2018, 16, 237-252.	1.0	66
23	Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience. ICES Journal of Marine Science, 2018, 75, 1871-1881.	1.2	76
24	Seasonal ecology in ice-covered Arctic seas - Considerations for spill response decision making. Marine Environmental Research, 2018, 141, 275-288.	1.1	15
25	New insights into the biology of Calanus spp. (Copepoda) males in the Arctic. Marine Ecology - Progress Series, 2018, 607, 53-69.	0.9	32
26	From polar night to midnight sun: Diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnology and Oceanography, 2017, 62, 1586-1605.	1.6	44
27	Genetics redraws pelagic biogeography of <i>Calanus</i> . Biology Letters, 2017, 13, 20170588.	1.0	62
28	Plankton community composition and vertical migration during polar night in Kongsfjorden. Polar Biology, 2016, 39, 1879-1895.	0.5	21
29	Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Progress in Oceanography, 2016, 149, 40-81.	1.5	95
30	Small-scale diel vertical migration of zooplankton in the High Arctic. Polar Biology, 2016, 39, 1213-1223.	0.5	12
31	Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Progress in Oceanography, 2015, 139, 122-150.	1.5	140
32	A fish-eye view on the new Arctic lightscape. ICES Journal of Marine Science, 2015, 72, 2532-2538.	1.2	57
33	In the dark: A review of ecosystem processes during the Arctic polar night. Progress in Oceanography, 2015, 139, 258-271.	1.5	157
34	Unexpected Levels of Biological Activity during the Polar Night Offer New Perspectives on a Warming Arctic. Current Biology, 2015, 25, 2555-2561.	1.8	163
35	Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?. PLoS ONE, 2015, 10, e0126247.	1.1	59
36	Non-consumptive mortality in copepods: occurrence of Calanus spp. carcasses in the Arctic Ocean during winter. Journal of Plankton Research, 2014, 36, 129-144.	0.8	79

MALIN DAASE

#	Article	IF	CITATIONS
37	Timing of reproductive events in the marine copepod <i>Calanus glacialis</i> : a pan-Arctic perspective. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 871-884.	0.7	164
38	Mesozooplankton community development at elevated CO ₂ concentrations: results from a mesocosm experiment in an Arctic fjord. Biogeosciences, 2013, 10, 1391-1406.	1.3	46
39	Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences, 2013, 10, 1143-1153.	1.3	50
40	Floating Ice-Algal Aggregates below Melting Arctic Sea Ice. PLoS ONE, 2013, 8, e76599.	1.1	109
41	Retention of ice-associated amphipods: possible consequences for an ice-free Arctic Ocean. Biology Letters, 2012, 8, 1012-1015.	1.0	30
42	Effects of food quality on naupliar development in Calanus glacialis at subzero temperatures. Marine Ecology - Progress Series, 2011, 429, 111-124.	0.9	40
43	Seasonal and diel vertical migration of zooplankton in the High Arctic during the autumn midnight sun of 2008. Marine Biodiversity, 2011, 41, 365-382.	0.3	32
44	Vertical distribution of <i>Calanus</i> spp. and <i>Metridia longa</i> at four Arctic locations. Marine Biology Research, 2008, 4, 193-207.	0.3	50
45	The inf luence of advection on Calanus near Svalbard: statistical relations between salinity, temperature and copepod abundance. Journal of Plankton Research, 2007, 29, 903-911.	0.8	38
46	Mesozooplankton distribution in northern Svalbard waters in relation to hydrography. Polar Biology, 2007, 30, 969-981.	0.5	94
47	Dynamics of coexisting Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus populations in a high-Arctic fjord. Polar Biology, 2005, 28, 528-538.	0.5	101
48	Observations of mass mortality of Themisto libellula (Amphipoda, Hyperidae). Polar Biology, 2002, 25, 396-398.	0.5	18
49	Surface aggregations of <i>Calanus finmarchicus</i> during the polar night. ICES Journal of Marine Science, 0, , .	1.2	1