
Daniel E Resasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/163528/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Narrow (n,m)-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst. Journal of the American Chemical Society, 2003, 125, 11186-11187.	13.7	807
2	Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science, 2010, 327, 68-72.	12.6	719
3	Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chemical Physics Letters, 2000, 317, 497-503.	2.6	618
4	Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS. Journal of Physical Chemistry B, 2003, 107, 13357-13367.	2.6	569
5	Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni. Catalysis Letters, 2011, 141, 784-791.	2.6	514
6	Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. Journal of Catalysis, 2011, 277, 1-13.	6.2	487
7	Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. Journal of Catalysis, 2011, 284, 90-101.	6.2	463
8	Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. Journal of Catalysis, 2011, 281, 21-29.	6.2	450
9	Metal–Support Interaction: Group VIII Metals and Reducible Oxides. Advances in Catalysis, 1989, 36, 173-235.	0.2	400
10	Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization ofn-Butyl Methacrylate. Journal of the American Chemical Society, 2004, 126, 170-176.	13.7	391
11	A novel hybrid carbon material. Nature Nanotechnology, 2007, 2, 156-161.	31.5	369
12	Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine. Nano Letters, 2002, 2, 369-373.	9.1	360
13	Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 2013, 3, 2456-2473.	11.2	359
14	Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 5852-5858.	2.6	347
15	Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods. Macromolecules, 2004, 37, 752-757.	4.8	338
16	Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd–Cu/SiO2 catalysts. Journal of Catalysis, 2011, 280, 17-27.	6.2	323
17	A model of metal-oxide support interaction for Rh on TiO2. Journal of Catalysis, 1983, 82, 279-288.	6.2	301
18	Hydrophobic Zeolites for Biofuel Upgrading Reactions at the Liquid–Liquid Interface in Water/Oil Emulsions. Journal of the American Chemical Society, 2012, 134, 8570-8578.	13.7	291

#	Article	IF	CITATIONS
19	Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. Journal of Biomedical Optics, 2009, 14, 021009.	2.6	273
20	CO2 Reforming of CH4 over Pt/ZrO2 Catalysts Promoted with La and Ce Oxides. Journal of Catalysis, 2000, 194, 240-249.	6.2	271
21	SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization. Nano Letters, 2002, 2, 797-802.	9.1	271
22	Tailoring (n,m) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts. Journal of Physical Chemistry B, 2006, 110, 2108-2115.	2.6	261
23	Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO. Carbon, 2001, 39, 547-558.	10.3	258
24	Dispersion of Single-Walled Carbon Nanotubes of Narrow Diameter Distribution. Journal of Physical Chemistry B, 2005, 109, 14454-14460.	2.6	254
25	Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. Journal of Molecular Catalysis A, 2014, 388-389, 47-55.	4.8	243
26	Effect of Mild Nitric Acid Oxidation on Dispersability, Size, and Structure of Single-Walled Carbon Nanotubes. Chemistry of Materials, 2007, 19, 5765-5772.	6.7	230
27	Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1â^'xO2 catalysts. Chemical Engineering Journal, 2001, 82, 21-31.	12.7	214
28	Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate. Macromolecules, 2004, 37, 3965-3967.	4.8	209
29	Evaluation of different reaction strategies for the improvement of cetane number in diesel fuels. Fuel, 2006, 85, 643-656.	6.4	198
30	Title is missing!. Journal of Nanoparticle Research, 2002, 4, 131-136.	1.9	190
31	Anisole and Guaiacol Hydrodeoxygenation over Monolithic Pt–Sn Catalysts. Energy & Fuels, 2011, 25, 4155-4162.	5.1	190
32	Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation. Journal of Catalysis, 2001, 204, 129-145.	6.2	189
33	Role of Keto Intermediates in the Hydrodeoxygenation of Phenol over Pd on Oxophilic Supports. ACS Catalysis, 2015, 5, 1318-1329.	11.2	186
34	Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials, 2012, 33, 3235-3242.	11.4	183
35	Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer, 2004, 45, 4437-4443.	3.8	177
36	Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts. Journal of Catalysis, 2004, 228, 100-113.	6.2	174

#	Article	IF	CITATIONS
37	Study of Ni catalysts on different supports to obtain synthesis gas. International Journal of Hydrogen Energy, 2005, 30, 1399-1405.	7.1	173
38	Hydrodeoxygenation of Phenol over Pd Catalysts. Effect of Support on Reaction Mechanism and Catalyst Deactivation. ACS Catalysis, 2017, 7, 2058-2073.	11.2	171
39	Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nature Catalysis, 2019, 2, 431-436.	34.4	171
40	Phaseâ€Selective Catalysis in Emulsions Stabilized by Janus Silicaâ€Nanoparticles. Advanced Synthesis and Catalysis, 2010, 352, 2359-2364.	4.3	168
41	Characterization of Single-Walled Carbon Nanotubes (SWNTs) Produced by CO Disproportionation on Coâ^'Mo Catalysts. Chemistry of Materials, 2002, 14, 1853-1858.	6.7	163
42	Water-Mediated Heterogeneously Catalyzed Reactions. ACS Catalysis, 2020, 10, 1294-1309.	11.2	156
43	Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst. Journal of Catalysis, 2014, 317, 22-29.	6.2	154
44	Factors that Determine Zeolite Stability in Hot Liquid Water. Journal of the American Chemical Society, 2015, 137, 11810-11819.	13.7	154
45	Emulsions Stabilized by Carbon Nanotubeâ^'Silica Nanohybrids. Langmuir, 2009, 25, 10843-10851.	3.5	151
46	Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Applied Catalysis B: Environmental, 2014, 145, 10-23.	20.2	151
47	Catalytic Deoxygenation of Methyl-Octanoate and Methyl-Stearate on Pt/Al2O3. Catalysis Letters, 2009, 130, 9-18.	2.6	150
48	Grafting of Poly(4-vinylpyridine) to Single-Walled Carbon Nanotubes and Assembly of Multilayer Films. Macromolecules, 2004, 37, 9963-9967.	4.8	145
49	Effect of Promotion with Sn on Supported Pt Catalysts for CO2Reforming of CH4. Journal of Catalysis, 1998, 178, 137-145.	6.2	140
50	Different Product Distributions and Mechanistic Aspects of the Hydrodeoxygenation of m-Cresol over Platinum and Ruthenium Catalysts. ACS Catalysis, 2015, 5, 6271-6283.	11.2	137
51	Effect of Zirconia Morphology on Hydrodeoxygenation of Phenol over Pd/ZrO ₂ . ACS Catalysis, 2015, 5, 7385-7398.	11.2	137
52	Raman Spectroscopy of Individual Single-Walled Carbon Nanotubes from Various Sources. Journal of Physical Chemistry B, 2005, 109, 10567-10573.	2.6	133
53	Tailoring the mesopore structure of HZSM-5 to control product distribution in the conversion of propanal. Journal of Catalysis, 2010, 271, 88-98.	6.2	128
54	Adsorption of Glucose Oxidase onto Single-Walled Carbon Nanotubes and Its Application in Layer-By-Layer Biosensors. Analytical Chemistry, 2009, 81, 7917-7925.	6.5	123

#	Article	IF	CITATIONS
55	Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts. Journal of Catalysis, 2012, 295, 169-178.	6.2	122
56	Isobutane Dehydrogenation on Pt–Sn/SiO2Catalysts: Effect of Preparation Variables and Regeneration Treatments. Journal of Catalysis, 1997, 168, 75-94.	6.2	121
57	Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 490-501.	2.1	121
58	Hydrodeoxygenation of m-cresol over gallium-modified beta zeolite catalysts. Journal of Catalysis, 2012, 290, 90-100.	6.2	120
59	Side-Wall Functionalization of Single-Walled Carbon Nanotubes with 4-Hydroxymethylaniline Followed by Polymerization of ε-Caprolactone. Macromolecules, 2005, 38, 8258-8263.	4.8	118
60	Bifunctionality of palladium-based catalysts used in the reduction of nitric oxide by methane in the presence of oxygen. Applied Catalysis B: Environmental, 1995, 7, 113-126.	20.2	115
61	Amphiphilic Silica Nanoparticles at the Decaneâ^'Water Interface: Insights from Atomistic Simulations. Langmuir, 2011, 27, 5264-5274.	3.5	115
62	Role of transalkylation reactions in the conversion of anisole over HZSM-5. Applied Catalysis A: General, 2010, 379, 172-181.	4.3	113
63	Condensation/Hydrogenation of Biomass-Derived Oxygenates in Water/Oil Emulsions Stabilized by Nanohybrid Catalysts. Topics in Catalysis, 2012, 55, 38-52.	2.8	113
64	Modification of the catalytic properties of sulfated zirconia by addition of metal promoters. Catalysis Letters, 1995, 32, 253-262.	2.6	107
65	Conversion of Glycerol to Alkyl-aromatics over Zeolites. Energy & amp; Fuels, 2010, 24, 3804-3809.	5.1	107
66	Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. Journal of Catalysis, 2013, 308, 82-97.	6.2	107
67	Mechanistic analysis of the role of metal oxophilicity in the hydrodeoxygenation of anisole. Journal of Catalysis, 2017, 347, 102-115.	6.2	107
68	Conversion of Guaiacol over Supported Ru Catalysts. Catalysis Letters, 2013, 143, 783-791.	2.6	106
69	Pump-Probe Spectroscopy of Exciton Dynamics in (6,5) Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3831-3835.	3.1	105
70	Structure, activity, and selectivity of bimetallic Pd-Fe/SiO2 and Pd-Fe/γ-Al2O3 catalysts for the conversion of furfural. Journal of Catalysis, 2017, 350, 30-40.	6.2	105
71	State of Pd on H-ZSM-5 and other acidic supports during the selective reduction of NO by CH4 studied by EXAFS/XANES. Applied Catalysis B: Environmental, 1997, 14, 13-22.	20.2	102
72	Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce–ZrO2 catalysts. Fuel Processing Technology, 2003, 83, 147-161.	7.2	98

#	Article	IF	CITATIONS
73	Efficient Conversion of <i>m</i> -Cresol to Aromatics on a Bifunctional Pt/HBeta Catalyst. Energy & Fuels, 2014, 28, 4104-4111.	5.1	98
74	Loss of single-walled carbon nanotubes selectivity by disruption of the Co–Mo interaction in the catalyst. Journal of Catalysis, 2004, 221, 354-364.	6.2	97
75	Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil. Green Chemistry, 2017, 19, 4315-4333.	9.0	97
76	Hydrodeoxygenation of m-cresol over bimetallic NiFe alloys: Kinetics and thermodynamics insight into reaction mechanism. Journal of Catalysis, 2018, 359, 272-286.	6.2	95
77	Enhancement of <i>m</i> -Cresol Hydrodeoxygenation Selectivity on Ni Catalysts by Surface Decoration of MoO _{<i>x</i>} Species. ACS Catalysis, 2019, 9, 7791-7800.	11.2	95
78	Stabilization of Aqueous Carbon Nanotube Dispersions Using Surfactants: Insights from Molecular Dynamics Simulations. ACS Nano, 2010, 4, 7193-7204.	14.6	93
79	Controlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of CoMo catalyst particles. Chemical Physics Letters, 2006, 422, 198-203.	2.6	92
80	Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite. Journal of Catalysis, 2009, 268, 68-78.	6.2	86
81	Condensation reactions of propanal over CexZr1â^'xO2 mixed oxide catalysts. Applied Catalysis A: General, 2010, 385, 80-91.	4.3	86
82	Zeolite-catalysed C–C bond forming reactions for biomass conversion to fuels and chemicals. Catalysis Science and Technology, 2016, 6, 2543-2559.	4.1	84
83	Role of Oxophilic Supports in the Selective Hydrodeoxygenation of m-Cresol on Pd Catalysts. Catalysis Letters, 2014, 144, 2005-2011.	2.6	82
84	The Effect of Metal Type on Hydrodeoxygenation of Phenol Over Silica Supported Catalysts. Catalysis Letters, 2016, 146, 1848-1857.	2.6	82
85	A comparison of the reactivities of propanal and propylene on HZSM-5. Journal of Catalysis, 2010, 271, 201-208.	6.2	81
86	Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts. Fuel, 2011, 90, 1155-1165.	6.4	80
87	Role of a phenolic pool in the conversion of m-cresol to aromatics over HY and HZSM-5 zeolites. Applied Catalysis A: General, 2014, 487, 62-71.	4.3	79
88	In situ TPO/Raman to characterize single-walled carbon nanotubes. Chemical Physics Letters, 2003, 376, 302-309.	2.6	77
89	Amphiphilic Nanohybrid Catalysts for Reactions at the Water/Oil Interface in Subsurface Reservoirs. Energy & Fuels, 2012, 26, 2231-2241.	5.1	77
90	Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. Journal of Catalysis, 2014, 314, 149-158.	6.2	76

#	Article	IF	CITATIONS
91	Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel. Catalysis Today, 2015, 257, 185-199.	4.4	76
92	Catalytic upgrading of biomass pyrolysis vapors and model compounds using niobia supported Pd catalysis B: Environmental, 2018, 238, 38-50.	20.2	76
93	Composites of Single-Walled Carbon Nanotubes and Polystyrene: Preparation and Electrical Conductivity. Chemistry of Materials, 2008, 20, 3120-3126.	6.7	75
94	Ring opening of 1,2- and 1,3-dimethylcyclohexane on iridium catalysts. Journal of Catalysis, 2006, 238, 477-488.	6.2	74
95	Characterization of the interaction between rhodium and titanium oxide by XPS. Journal of Catalysis, 1982, 77, 301-303.	6.2	71
96	Direct catalytic upgrading of biomass pyrolysis vapors by a dual function Ru/TiO ₂ catalyst. AICHE Journal, 2013, 59, 2275-2285.	3.6	68
97	Kinetics and Mechanism of Ketonization of Acetic Acid on Ru/TiO2 Catalyst. Topics in Catalysis, 2014, 57, 706-714.	2.8	68
98	Relationship between Atomic Scale Structure and Reactivity of Pt Catalysts: Hydrodeoxygenation of <i>m</i> -Cresol over Isolated Pt Cations and Clusters. ACS Catalysis, 2020, 10, 595-603.	11.2	68
99	Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation. Influence of Pt particle morphology on aromatization activity and deactivation. Applied Catalysis A: General, 1999, 188, 79-98.	4.3	67
100	Distributed processes for biomass conversion could aid UN Sustainable Development Goals. Nature Catalysis, 2018, 1, 731-735.	34.4	66
101	Quantifying the Semiconducting Fraction in Single-Walled Carbon Nanotube Samples through Comparative Atomic Force and Photoluminescence Microscopies. Nano Letters, 2009, 9, 3203-3208.	9.1	65
102	Competitive hydrogenation of poly-aromatic hydrocarbons on sulfur-resistant bimetallic Pt-Pd catalysts. Applied Catalysis A: General, 2004, 262, 241-253.	4.3	63
103	Deoxygenation of methylesters over CsNaX. Journal of Catalysis, 2008, 258, 199-209.	6.2	62
104	What Should We Demand from the Catalysts Responsible for Upgrading Biomass Pyrolysis Oil?. Journal of Physical Chemistry Letters, 2011, 2, 2294-2295.	4.6	62
105	NO reduction by CH4 in the presence of excess O2 over Pd/sulfated zirconia catalysts. Catalysis Today, 1999, 54, 419-429.	4.4	60
106	Influence of a Top Crust of Entangled Nanotubes on the Structure of Vertically Aligned Forests of Single-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 5624-5629.	6.7	60
107	Single-Walled Carbon Nanotube Pillars: A Superhydrophobic Surface. Langmuir, 2009, 25, 4792-4798.	3.5	60
108	Conversion of methylesters to hydrocarbons over an H-ZSM5 zeolite catalyst. Applied Catalysis A: General. 2009. 361. 99-105.	4.3	59

#	Article	IF	CITATIONS
109	Effects of HZSM-5 crystallite size on stability and alkyl-aromatics product distribution from conversion of propanal. Catalysis Communications, 2010, 11, 977-981.	3.3	58
110	Composites of Single-Walled Carbon Nanotubes and Styrene-Isoprene Copolymer Latices. Macromolecular Chemistry and Physics, 2007, 208, 446-456.	2.2	57
111	Hydrodeoxygenation of Phenol over Zirconiaâ€Supported Catalysts: The Effect of Metal Type on Reaction Mechanism and Catalyst Deactivation. ChemCatChem, 2017, 9, 2850-2863.	3.7	57
112	X-ray absorption near-edge structure evidence for direct metal-metal bonding and electron transfer in reduced rhodium/titania catalysts. The Journal of Physical Chemistry, 1988, 92, 189-193.	2.9	56
113	Zeolite Catalysis: Water Can Dramatically Increase or Suppress Alkane C–H Bond Activation. ACS Catalysis, 2014, 4, 3039-3044.	11.2	56
114	Hydrodeoxygenation of guaiacol over bimetallic Fe-alloyed (Ni, Pt) surfaces: reaction mechanism, transition-state scaling relations and descriptor for predicting C–O bond scission reactivity. Catalysis Science and Technology, 2018, 8, 2146-2158.	4.1	56
115	The role of defect sites and oxophilicity of the support on the phenol hydrodeoxygenation reaction. Applied Catalysis B: Environmental, 2019, 249, 292-305.	20.2	56
116	Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology, 2013, 24, 375104.	2.6	55
117	Ring contraction and selective ring opening of naphthenic molecules for octane number improvement. Applied Catalysis A: General, 2007, 325, 175-187.	4.3	54
118	Sulfated zirconia and tungstated zirconia as effective supports for Pd-based SCR catalysts. Catalysis Today, 2000, 62, 159-165.	4.4	53
119	Simultaneous Hydrogenation of Multiring Aromatic Compounds over NiMo Catalyst. Industrial & Engineering Chemistry Research, 2008, 47, 7161-7166.	3.7	53
120	Role of Coâ^'W Interaction in the Selective Growth of Single-Walled Carbon Nanotubes from CO Disproportionation. Journal of Physical Chemistry B, 2003, 107, 3738-3746.	2.6	52
121	Isobutane dehydrogenation over sulfided nickel catalysts. Journal of Catalysis, 1994, 146, 40-55.	6.2	50
122	Inhibition of the Hydrogenation and Hydrodesulfurization Reactions by Nitrogen Compounds over NiMo/Al2O3. Catalysis Letters, 2008, 123, 181-185.	2.6	50
123	Nanostructured Carbon–Metal Oxide Hybrids as Amphiphilic Emulsion Catalysts. ChemSusChem, 2011, 4, 964-974.	6.8	49
124	Single-Walled Carbon Nanotubes of Controlled Diameter and Bundle Size and Their Field Emission Properties. Journal of Physical Chemistry B, 2005, 109, 14375-14381.	2.6	48
125	Comparative study of the hydrogenation of tetralin on supported Ni, Pt, and Pd catalysts. Catalysis Today, 2007, 123, 218-223.	4.4	48
126	Improving stability of cyclopentanone aldol condensation MgO-based catalysts by surface hydrophobization with organosilanes. Applied Catalysis B: Environmental, 2018, 237, 835-843.	20.2	48

#	Article	IF	CITATIONS
127	Hydrogenation and Hydrodeoxygenation of 2-methyl-2-pentenal on supported metal catalysts. Journal of Catalysis, 2009, 266, 9-14.	6.2	47
128	Confirmation of K-Momentum Dark Exciton Vibronic Sidebands Using ¹³ C-labeled, Highly Enriched (6,5) Single-walled Carbon Nanotubes. Nano Letters, 2012, 12, 1398-1403.	9.1	47
129	Title is missing!. Catalysis Letters, 2003, 90, 13-21.	2.6	46
130	Deoxygenation of benzaldehyde over CsNaX zeolites. Journal of Molecular Catalysis A, 2009, 312, 78-86.	4.8	46
131	Effect of Metal–Acid Balance on Hydroprocessed Renewable Jet Fuel Synthesis from Hydrocracking and Hydroisomerization of Biohydrogenated Diesel over Pt-Supported Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 1429-1440.	3.7	46
132	Synergistic effect of oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 prepared by a single-step sol–gel process for deoxygenation of triglycerides. Applied Catalysis A: General, 2018, 566, 74-86.	4.3	46
133	CO Adsorption on Noble Metal Clusters: Local Environment Effects. Journal of Physical Chemistry C, 2011, 115, 5637-5647.	3.1	45
134	Catalyst decomposition during temperature programmed desorption of bases from promoted sulfated zirconias. Catalysis Letters, 1995, 34, 23-30.	2.6	44
135	Study of preparation parameters of powder and pelletized Pt/KL catalysts for n-hexane aromatization. Applied Catalysis A: General, 2001, 206, 267-282.	4.3	44
136	Molecular engineering approach in the selection of catalytic strategies for upgrading of biofuels. AICHE Journal, 2009, 55, 1082-1089.	3.6	44
137	Raman intensity measurements of single-walled carbon nanotube suspensions as a quantitative technique to assess purity. Carbon, 2010, 48, 2873-2881.	10.3	44
138	Temperature Programmed Oxidation Coupled with Inâ€Situ Techniques Reveal the Nature and Location of Coke Deposited on a Ni/La ₂ O ₃ â€i±Al ₂ O ₃ Catalyst in the Steam Reforming of Bioâ€oil. ChemCatChem, 2018, 10, 2311-2321.	3.7	44
139	Comparative Study ofn-Hexane Aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO2Catalysts: Clean and Sulfur-Containing Feeds. Journal of Catalysis, 1998, 179, 43-55.	6.2	43
140	n-Octane aromatization on a Pt/KL catalyst prepared by vapor-phase impregnation. Journal of Catalysis, 2003, 218, 1-11.	6.2	43
141	Induction of activity and deactivation of Fe, Mn-promoted sulfated zirconia catalysts. Catalysis Today, 1996, 28, 415-429.	4.4	42
142	Tuning the acid–metal balance in Pd/ and Pt/zeolite catalysts for the hydroalkylation of m-cresol. Journal of Catalysis, 2015, 328, 173-185.	6.2	42
143	Stabilization of the active phase by interaction with the support in CuCl2 oxychlorination catalysts. Journal of Catalysis, 1986, 99, 12-18.	6.2	41
144	Hydride transfer between a phenolic surface pool and reactant paraffins in the catalytic cracking of m-cresol/hexanes mixtures over an HY zeolite. Journal of Catalysis, 2015, 329, 57-68.	6.2	41

#	Article	IF	CITATIONS
145	Multistage torrefaction and in situ catalytic upgrading to hydrocarbon biofuels: analysis of life cycle energy use and greenhouse gas emissions. Energy and Environmental Science, 2017, 10, 1034-1050.	30.8	41
146	Role of the metal-support interface in the hydrodeoxygenation reaction of phenol. Applied Catalysis B: Environmental, 2020, 277, 119238.	20.2	41
147	Deactivation of Ni–Mo/Al2O3 catalysts aged in a commercial reactor during the hydrotreating of deasphalted vacuum residuum. Applied Catalysis A: General, 2000, 199, 263-273.	4.3	40
148	Improving carbon retention in biomass conversion by alkylation of phenolics with small oxygenates. Applied Catalysis A: General, 2012, 447-448, 14-21.	4.3	40
149	Water Interactions in Zeolite Catalysts and Their Hydrophobically Modified Analogues. ACS Catalysis, 2015, 5, 7480-7487.	11.2	40
150	Potential Role of Penta-Coordinated Sulfur in the Acid Site Structure of Sulfated Zirconia. Journal of Catalysis, 1995, 157, 755-758.	6.2	39
151	Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology, 2018, 29, 035101.	2.6	38
152	Role of water in cyclopentanone self-condensation reaction catalyzed by MCM-41 functionalized with sulfonic acid groups. Journal of Catalysis, 2019, 377, 245-254.	6.2	38
153	Aldol Condensation of Cyclopentanone on Hydrophobized MgO. Promotional Role of Water and Changes in the Rate-Limiting Step upon Organosilane Functionalization. ACS Catalysis, 2019, 9, 2831-2841.	11.2	38
154	Increased Sulfur Tolerance of Pt/KL Catalysts Prepared by Vapor-Phase Impregnation and Containing a Tm Promoter. Journal of Catalysis, 2000, 191, 116-127.	6.2	37
155	Role of the Catalyst in the Growth of Single-Wall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2006, 6, 1247-1258.	0.9	37
156	Silica Nanoparticle Wettability: Characterization and Effects on the Emulsion Properties. Industrial & Engineering Chemistry Research, 2015, 54, 4274-4284.	3.7	37
157	Decoupling HZSMâ€5 Catalyst Activity from Deactivation during Upgrading of Pyrolysis Oil Vapors. ChemSusChem, 2015, 8, 552-559.	6.8	37
158	n-Octane aromatization over Pt/KL of varying morphology and channel lengths. Applied Catalysis A: General, 2006, 313, 189-199.	4.3	36
159	Gluconic Acid from Biomass Fast Pyrolysis Oils: Specialty Chemicals from the Thermochemical Conversion of Biomass. ChemSusChem, 2014, 7, 3132-3137.	6.8	36
160	Enhanced Activity and Selectivity of Fischer–Tropsch Synthesis Catalysts in Water/Oil Emulsions. ACS Catalysis, 2014, 4, 1944-1952.	11.2	36
161	Retention of biological activity and near-infrared absorbance upon adsorption of horseradish peroxidase on single-walled carbon nanotubes. Nanotechnology, 2007, 18, 235601.	2.6	35
162	Carbon Nanotube/Zeolite Hybrid Catalysts for Glucose Conversion in Water/Oil Emulsions. ACS Catalysis, 2015, 5, 4761-4771.	11.2	35

#	Article	IF	CITATIONS
163	Targeted Single-Walled Carbon Nanotubes for Photothermal Therapy Combined with Immune Checkpoint Inhibition for the Treatment of Metastatic Breast Cancer. Nanoscale Research Letters, 2021, 16, 9.	5.7	35
164	Kinetic Modeling of the SWNT Growth by CO Disproportionation on CoMo Catalysts. Journal of Nanoscience and Nanotechnology, 2008, 8, 6141-6152.	0.9	34
165	Anchoring Pd nanoclusters onto pristine and functionalized single-wall carbon nanotubes: A combined DFT and experimental study. Chemical Physics Letters, 2010, 497, 103-107.	2.6	34
166	Interference Phenomena in the EXAFS Spectra of Ptâ^'Sn Bimetallic Catalysts. Journal of Physical Chemistry B, 1998, 102, 5077-5081.	2.6	33
167	Surface characterization of cotton coated by a thin film of polystyrene with and without a cross-linking agent. Journal of Colloid and Interface Science, 2005, 281, 307-315.	9.4	33
168	Novel Micropyrolyis Index (MPI) to Estimate the Sooting Tendency of Fuels. Energy & Fuels, 2008, 22, 2455-2464.	5.1	32
169	Simultaneous Upgrading of Furanics and Phenolics through Hydroxyalkylation/Aldol Condensation Reactions. ChemSusChem, 2017, 10, 1631-1639.	6.8	32
170	Elucidating the Structure of Bimetallic NiW/SiO ₂ Catalysts and Its Consequences on Selective Deoxygenation of <i>m</i> -Cresol to Toluene. ACS Catalysis, 2021, 11, 2935-2948.	11.2	32
171	The effect of silica support texture and anion of impregnating solution on Ru dispersion and on Ru\$z.sbnd;Cu interaction. Journal of Catalysis, 1983, 84, 477-479.	6.2	31
172	Effect of silica support on ruthenium-copper cluster morphology as determined by catalytic activity. The Journal of Physical Chemistry, 1987, 91, 2665-2671.	2.9	31
173	Geometric and promoting effects of methylcyclopentane conversion over alkaline Pt/L zeolites. Catalysis Letters, 1991, 8, 53-60.	2.6	31
174	Title is missing!. Catalysis Letters, 1998, 56, 111-117.	2.6	31
175	Steam reforming of light oxygenates. Catalysis Science and Technology, 2013, 3, 3292.	4.1	31
176	Reaction pathways in the liquid phase alkylation of biomassâ€derived phenolic compounds. AICHE Journal, 2015, 61, 598-609.	3.6	31
177	The role of intermediate Co _x Mn _{1â^'x} O (<i>x</i> = 0.6–0.85) nanocrystals in the formation of active species for the direct production of lower olefins from syngas. Chemical Communications, 2019, 55, 6595-6598.	4.1	31
178	Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces. Surface Science Reports, 2021, 76, 100541.	7.2	31
179	Influence of nanotube characteristics on electrical and thermal properties of MWCNT/polyamide 6,6 composites prepared by melt mixing. Carbon, 2012, 50, 3694-3707.	10.3	30
180	Controlling phenolic hydrodeoxygenation by tailoring metal–O bond strength via specific catalyst metal type andÂparticle size selection. Comptes Rendus Chimie, 2018, 21, 155-163.	0.5	30

#	Article	IF	CITATIONS
181	Dispersion Effects on Alkane Hydrogenolysis over Rhodium Supported on Titanium Oxide. Studies in Surface Science and Catalysis, 1982, 11, 105-112.	1.5	29
182	Novel rhodium/titania and iridium/titania catalysts for n-butane isomerization and dehydrogenation. The Journal of Physical Chemistry, 1984, 88, 4552-4556.	2.9	29
183	Methylcyclopentane Ring Opening as a Reaction Test for Pt Catalysts Supported on Non-acidic Materials. Journal of Catalysis, 1996, 164, 467-476.	6.2	28
184	Angle-resolved x-ray absorption near edge structure study of vertically aligned single-walled carbon nanotubes. Applied Physics Letters, 2007, 90, 103115.	3.3	28
185	Interaction of water with zeolites: a review. Catalysis Reviews - Science and Engineering, 2021, 63, 302-362.	12.9	28
186	Support effects on selectivity over rhodium bimetallic catalysts. Faraday Discussions of the Chemical Society, 1981, 72, 109.	2.2	27
187	High-temperature oxychlorination catalysts: Role of LaCl3 as an inhibitor of the segregation of active species during heating/cooling cycles. Journal of Catalysis, 1990, 122, 151-165.	6.2	27
188	Comparison of the different promoting effects of Feî—,Mn, Ni and Pt on the n-butane isomerization activity of sulfated zirconia catalysts. Applied Catalysis A: General, 1997, 162, 103-119.	4.3	27
189	Modelling of experimental vanillin hydrodeoxygenation reactions in water/oil emulsions. Effects of mass transport. Catalysis Today, 2013, 210, 89-97.	4.4	27
190	Synthesis of C ₄ and C ₈ Chemicals from Ethanol on MgOâ€Incorporated Faujasite Catalysts with Balanced Confinement Effects and Basicity. ChemSusChem, 2016, 9, 736-748.	6.8	27
191	Effects of the support and the addition of a second promoter on potassium chloride-copper(II) chloride catalysts used in the oxychlorination of methane. Applied Catalysis, 1989, 46, 251-267.	0.8	26
192	Raman Characterization of Single-Walled Nanotubes of Various Diameters Obtained by Catalytic Disproportionation of CO. Journal of Nanoscience and Nanotechnology, 2003, 3, 133-138.	0.9	26
193	Polymer-Stabilized Multi-Walled Carbon Nanotube Dispersions in High-Salinity Brines. Energy & Fuels, 2017, 31, 5024-5030.	5.1	26
194	Conversion of nitric oxide and methane over Pd/ZSM-5 catalysts in the absence of oxygen. Applied Catalysis B: Environmental, 1995, 5, 351-365.	20.2	25
195	Comparison between methane and propylene as reducing agents in the SCR of NO over Pd supported on tungstated zirconia. Catalysis Today, 2000, 62, 291-302.	4.4	25
196	n-Octane aromatization on Pt-containing non-acidic large pore zeolite catalysts. Catalysis Letters, 2005, 100, 7-15.	2.6	25
197	Ring opening of 1,3-dimethylcyclohexane on Ir catalysts. Journal of Molecular Catalysis A, 2007, 274, 231-240.	4.8	25
198	Water Promotion (or Inhibition) of Condensation Reactions Depends on Exposed Cerium Oxide Catalyst Facets. ACS Catalysis, 2020, 10, 5373-5382.	11.2	25

#	Article	IF	CITATIONS
199	Interfacially Active SWNT/Silica Nanohybrid Used In Enhanced Oil Recovery. , 2010, , .		24
200	Effect of extra-framework cesium on the deoxygenation of methylester over CsNaX zeolites. Applied Catalysis A: General, 2011, 409-410, 74-81.	4.3	24
201	Fischer–Tropsch Synthesis Catalyzed by Solid Nanoparticles at the Water/Oil Interface in an Emulsion System. Energy & Fuels, 2013, 27, 6118-6124.	5.1	24
202	Improving the selectivity to C4 products in the aldol condensation of acetaldehyde in ethanol over faujasite zeolites. Applied Catalysis A: General, 2015, 504, 119-129.	4.3	24
203	Comparison of hydrogenation and hydrogenolysis on unsupported and silica-supported Rh–V2O3 and Pt–V2O3. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 2091.	1.0	23
204	Catalytic strategies for improving specific fuel properties. Catalysis, 0, , 33-64.	1.0	23
205	Enhanced Sulfur Tolerance of Bimetallic PtPd/Al2O3 Catalysts for Hydrogenation of Tetralin by Addition of Fluorine. Catalysis Letters, 2008, 122, 214-222.	2.6	23
206	Conversion of Methylesters to Hydrocarbons Over Zn-Modified H-ZSM-5 Zeolite Catalyst. Catalysis Letters, 2009, 132, 197-204.	2.6	23
207	Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems. Chinese Journal of Catalysis, 2014, 35, 798-806.	14.0	23
208	A Systemsâ€Level Roadmap for Biomass Thermal Fractionation and Catalytic Upgrading Strategies. Energy Technology, 2017, 5, 130-150.	3.8	23
209	Effects of promoters and supports on coke formation on Pt catalysts during CH4 reforming with CO2. Studies in Surface Science and Catalysis, 1997, 111, 543-550.	1.5	22
210	Sulfur- and water-tolerance of Pt/KL aromatization catalysts promoted with Ce and Yb. Applied Catalysis A: General, 2002, 230, 177-193.	4.3	21
211	Synergistic bimetallic Ru–Pt catalysts for the lowâ€ŧemperature aqueous phase reforming of ethanol. AICHE Journal, 2019, 65, 151-160.	3.6	21
212	Effects of oxidation and reduction treatments on methylcyclopentane hydrogenolysis over Rh/TiO2 and Rh/SiO2 catalysts. Journal of Catalysis, 1990, 121, 77-88.	6.2	20
213	Solâ^'Gel Synthesis and Characterization of Coâ~'Mo/Silica Catalysts for Single-Walled Carbon Nanotube Production. Chemistry of Materials, 2009, 21, 2238-2246.	6.7	20
214	Propagation of Interfacially Active Carbon Nanohybrids in Porous Media. Energy & Fuels, 2013, 27, 6518-6527.	5.1	20
215	Enhancing the Acylation Activity of Acetic Acid by Formation of an Intermediate Aromatic Ester. ChemSusChem, 2017, 10, 2823-2832.	6.8	20
216	Enhanced chemical activity and wettability at adjacent BrÃ,nsted acid sites in HZSM-5. Catalysis Today, 2018, 312, 44-50.	4.4	20

#	Article	IF	CITATIONS
217	Hydrodeoxygenation of Lignin-Derived Compound Mixtures on Pd-Supported on Various Oxides. ACS Sustainable Chemistry and Engineering, 2021, 9, 12870-12884.	6.7	20
218	Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer. Nanotechnology, 2011, 22, 455101.	2.6	19
219	High-Temperature Grafting Silylation for Minimizing Leaching of Acid Functionality from Hydrophobic Mesoporous Silicas Used as Catalysts in the Liquid Phase. Langmuir, 2019, 35, 6838-6852.	3.5	19
220	Activity and stability of mesoporous CeO2 and ZrO2 catalysts for the self-condensation of cyclopentanone. Applied Catalysis B: Environmental, 2020, 267, 118373.	20.2	19
221	Selectivity changes in the ring-opening reaction of methylcyclopentane over rhodium catalysts caused by the addition of silver and metal—support interactions. Applied Catalysis, 1990, 63, 319-332.	0.8	18
222	Determination of the Metallic/Semiconducting Ratio in Bulk Single-Wall Carbon Nanotube Samples by Cobalt Porphyrin Probe Electron Paramagnetic Resonance Spectroscopy. ACS Nano, 2010, 4, 6717-6724.	14.6	18
223	Unraveling the ¹³ C NMR Chemical Shifts in Single-Walled Carbon Nanotubes: Dependence on Diameter and Electronic Structure. Journal of the American Chemical Society, 2012, 134, 4850-4856.	13.7	18
224	Generation of synergistic sites by thermal treatment of HY zeolite. Evidence from the reaction of hexane isomers. Journal of Catalysis, 2014, 317, 11-21.	6.2	18
225	Hydrophobic zeolites for the upgrading of biomass-derived short oxygenated compounds in water/oil emulsions. Applied Catalysis A: General, 2018, 559, 94-101.	4.3	18
226	C O cleavage of diphenyl ether followed by C C coupling reactions over hydrophobized Pd/HY catalysts. Applied Catalysis B: Environmental, 2019, 259, 118081.	20.2	18
227	Enhanced Fischer–Tropsch Synthesis Rates by the Combined Presence of Aqueous and Organic Media in Biphasic Systems. ACS Catalysis, 2020, 10, 4433-4443.	11.2	18
228	Etherification of aldehydes, alcohols and their mixtures on Pd/SiO2 catalysts. Applied Catalysis A: General, 2010, 379, 135-140.	4.3	17
229	Hydrodeoxygenation of anisole over different Rh surfaces. Chinese Journal of Catalysis, 2019, 40, 1721-1730.	14.0	17
230	Metal-support interaction on Pt/ZrO2 catalysts for the CO2 reforming of CH4. Studies in Surface Science and Catalysis, 2000, , 3663-3668.	1.5	16
231	Decomposition of Carbon-Containing Compounds on Solid Catalysts for Single-Walled Nanotube Production. Journal of Nanoscience and Nanotechnology, 2004, 4, 398-407.	0.9	15
232	Carbon nanomaterial commercialization: Lessons for graphene from carbon nanotubes. MRS Bulletin, 2012, 37, 1297-1306.	3.5	15
233	Pseudosolid, Shear-Thinning Gel Formation in Binary Dispersions of Metal Oxide Nanoparticles at Low Volume Fractions. Langmuir, 2014, 30, 14982-14990.	3.5	15
234	Reaction mechanism of aqueous-phase conversion of γ-valerolactone (GVL) over a Ru/C catalyst. Journal of Energy Chemistry, 2016, 25, 1008-1014.	12.9	15

#	Article	IF	CITATIONS
235	Indirect effect of the strong metal-support interaction on the metal-metal inter-action in Rh-Ag/TiO2 catalysts. Applied Catalysis, 1983, 8, 99-107.	0.8	14
236	Systems-Level Analysis of Energy and Greenhouse Gas Emissions for Coproducing Biobased Fuels and Chemicals: Implications for Sustainability. ACS Sustainable Chemistry and Engineering, 2018, 6, 5826-5834.	6.7	14
237	Chemisorption and sensitivity at semiconductor sensors revisited. Sensors and Actuators B: Chemical, 2019, 285, 232-239.	7.8	14
238	A comparative study of thermal- and electrocatalytic conversion of furfural: methylfuran as a primary and major product. Journal of Applied Electrochemistry, 2021, 51, 19-26.	2.9	14
239	Optimizing the surface distribution of acid sites for cooperative catalysis in condensation reactions promoted by water. Chem Catalysis, 2021, 1, 1065-1087.	6.1	14
240	Prebreakdown Conduction in ZnO Varistors. Journal of the American Ceramic Society, 1992, 75, 800-804.	3.8	13
241	Deactivation and shape selectivity effects in toluene nitration over zeolite catalysts. Studies in Surface Science and Catalysis, 1997, , 199-206.	1.5	13
242	Gas-Phase Kinetic Studies of Tetralin Hydrogenation on Pt/Alumina. Industrial & Engineering Chemistry Research, 2005, 44, 7928-7934.	3.7	13
243	Giving catalysis the edge. Nature Nanotechnology, 2008, 3, 708-709.	31.5	13
244	Clarifying the multiple roles of confinement in zeolites: From stabilization of transition states to modification of internal diffusion rates. Journal of Catalysis, 2019, 372, 382-387.	6.2	13
245	n-Butane isomerization on Ni-promoted sulfated zirconia catalysts. Studies in Surface Science and Catalysis, 1996, 101, 553-562.	1.5	12
246	Wideâ€range optical spectra of carbon nanotubes: a comparative study. Physica Status Solidi (B): Basic Research, 2008, 245, 2229-2232.	1.5	12
247	Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence of different hydrocarbon mixtures. Applied Catalysis B: Environmental, 2011, , .	20.2	12
248	Hydrophilic encapsulation of multi-walled carbon nanotubes using admicellar polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 1-8.	4.7	12
249	Reaction Mechanism for the Conversion of γ-Valerolactone (GVL) over a Ru Catalyst: A First-Principles Study. Industrial & Engineering Chemistry Research, 2017, 56, 3217-3222.	3.7	12
250	Conversion of 1-tetralone over HY zeolite: An indicator of the extent of hydrogen transfer. Applied Catalysis A: General, 2010, 389, 140-146.	4.3	11
251	Stabilization of Interfacially-Active-Nanohybrids/Polymer Suspensions and Transport through Porous Media. , 2012, , .		11
252	Dispersion Stability and Transport of Nanohybrids through Porous Media. Transport in Porous Media, 2013, 96, 63-81.	2.6	11

#	Article	IF	CITATIONS
253	Reaction pathways for the HDO of guaiacol over supported Pd catalysts: Effect of support type in the deoxygenation of hydroxyl and methoxy groups. Molecular Catalysis, 2022, 523, 111491.	2.0	11
254	Promoter action of KCl on CuCl2/SiO2 catalysts used for the oxyhydrochlorination of methane. Applied Catalysis, 1987, 29, 55-66.	0.8	10
255	Exciton dynamics probed in carbon nanotube suspensions with narrow diameter distribution. Physica Status Solidi (B): Basic Research, 2006, 243, 3186-3191.	1.5	10
256	EFFECT OF ZEOLITE CRYSTALLITE SIZE ON Pt/KL CATALYSTS USED FOR THE AROMATIZATION OF n-OCTANE. Chemical Engineering Communications, 2007, 194, 946-961.	2.6	10
257	Factors Determining Selectivity of Acid- and Base-Catalyzed Self- and Cross-Condensation of Acetone and Cyclopentanone. ACS Catalysis, 2020, 10, 12790-12800.	11.2	10
258	Acylation of m-cresol with acetic acid supported by in-situ ester formation on H-ZSM-5 zeolites. Journal of Catalysis, 2022, 406, 48-55.	6.2	10
259	The implications of one-dimensional ordering of Rh on the (110) surface of rutile*1. Journal of Catalysis, 1987, 104, 252-255.	6.2	9
260	Characterization of active species in alumina and silica supported CuCl2 catalysts by EPR. Reaction Kinetics and Catalysis Letters, 1988, 36, 223-227.	0.6	9
261	Single-Walled Carbon Nanotubes Do Not Pierce Aqueous Phospholipid Bilayers at Low Salt Concentration. Journal of Physical Chemistry B, 2013, 117, 6749-6758.	2.6	9
262	Oxide-catalyzed self- and cross-condensation of cycloketones. Kinetically relevant steps that determine product distribution. Journal of Catalysis, 2020, 391, 163-174.	6.2	9
263	Temperature dependence of the quality of silicon nanowires produced over a titania-supported gold catalyst. Chemical Physics Letters, 2003, 377, 377-383.	2.6	8
264	Synthesis of α,β―and βâ€Unsaturated Acids and Hydroxy Acids by Tandem Oxidation, Epoxidation, and Hydrolysis/Hydrogenation of Bioethanol Derivatives. Angewandte Chemie - International Edition, 2020, 59, 7456-7460.	13.8	8
265	Platinum-Nickel/L-zeolite Bimetallic Catalysts: Effect of Sulfur Exposure on Metal Particle Size and n-Hexane Aromatization Activity and Selectivity. Studies in Surface Science and Catalysis, 1994, 83, 321-329.	1.5	7
266	Transport and deposition kinetics of polymer oated multiwalled carbon nanotubes in packed beds. AICHE Journal, 2016, 62, 3774-3783.	3.6	7
267	Fineâ€Tuning the Acid–Base Properties of Boronâ€Doped Magnesium Oxide Catalyst for the Selective Aldol Condensation. ChemCatChem, 2016, 8, 3611-3620.	3.7	7
268	First-Formed Framework Species and Phosphate Structure Distributions in Phosphorus-Modified MFI Zeolites. Journal of Physical Chemistry C, 2022, 126, 227-238.	3.1	7
269	Nitrogen chemisorption on Rh induced by a strong metal–support (TiO2) interaction. Journal of the Chemical Society Chemical Communications, 1980, , 1150-1151.	2.0	6
270	Interactions of the Impregnating Solution With the Support During the Preparation of Rh/Tio2 Catalysts. Studies in Surface Science and Catalysis, 1991, 63, 77-86.	1.5	6

#	Article	IF	CITATIONS
271	Study of the growth of conductive single-wall carbon nanotube films with ultra-high transparency. Chemical Physics Letters, 2011, 511, 356-362.	2.6	6
272	Role of water on the surface-guided growth of horizontally aligned single-walled carbon nanotubes on quartz. Chemical Physics Letters, 2012, 525-526, 82-86.	2.6	6
273	Furfurals As Chemical Platform For Biofuels Production. , 2015, , 103-144.		6
274	Propagation of Carbon Nanotube Hybrids through Porous Media for Advancing Oilfield Technology. , 2015, , .		6
275	Experimental and computational kinetics study of the liquid-phase hydrogenation of C C and C O bonds. Journal of Catalysis, 2021, 404, 771-785.	6.2	5
276	How do structure and topology of the catalyst affect water promotion or inhibition effects?. Chem Catalysis, 2021, 1, 962-965.	6.1	5
277	Can we predict whether water will inhibit or enhance a given catalytic reaction?. Chem Catalysis, 2021, 1, 959-961.	6.1	5
278	Direct catalytic synthesis of ethylene from methane. Reaction Kinetics and Catalysis Letters, 1985, 28, 431-435.	0.6	4
279	Enhanced methane production from methanol decomposition over Pt/TiO2 catalysts. Reaction Kinetics and Catalysis Letters, 1989, 40, 89-94.	0.6	4
280	Regeneration and oxidation-reduction cycles of vapor phase and incipient wetness impregnation Pt/KL catalysts. Studies in Surface Science and Catalysis, 2000, 130, 2537-2542.	1.5	4
281	Silica supported singleâ€walled carbon nanotubes as a modifier in polyethylene composites. Journal of Applied Polymer Science, 2009, 111, 589-601.	2.6	4
282	Carbon Nanotube Integration with a CMOS Process. Sensors, 2010, 10, 3857-3867.	3.8	4
283	n-Hexane sorption in pelletized 5A zeolite. Industrial & Engineering Chemistry Process Design and Development, 1986, 25, 290-293.	0.6	3
284	Workshop on the progress in catalyst preparation. summary, conclusions, and recommendations. Catalysis Today, 1992, 15, 339-348.	4.4	3
285	Encapsulation of multi-walled carbon nanotubes with copolymer to disperse in aqueous media. Journal of Polymer Research, 2017, 24, 1.	2.4	3
286	Reversible Hydrogenation–Dehydrogenation of Acetylpyridine-Pd-MIL-101(Cr) for Chemical Hydrogen Storage. Industrial & Engineering Chemistry Research, 2020, 59, 17671-17679.	3.7	3
287	Conversion of 1- and 2-Tetralone Over HY Zeolite. Catalysis Letters, 2010, 135, 226-232.	2.6	2
288	Ammonia decomposition on polycrystalline Pt at pressures between 1.3 and 93 kPa. Reaction Kinetics and Catalysis Letters, 1985, 28, 407-410.	0.6	1

#	Article	IF	CITATIONS
289	Non-covalent Attachment of Proteins to Single-Walled Carbon Nanotubes. Methods in Molecular Biology, 2010, 625, 3-8.	0.9	1
290	Synthesis of α,β―and βâ€Unsaturated Acids and Hydroxy Acids by Tandem Oxidation, Epoxidation, and Hydrolysis/Hydrogenation of Bioethanol Derivatives. Angewandte Chemie, 2020, 132, 7526-7530.	2.0	1
291	Characterization of strong metal-support interaction in Pt/TiO2 catalysts by thermal programmed desorption of benzene. Reaction Kinetics and Catalysis Letters, 1986, 31, 145-149.	0.6	0
292	The Preparation and Characterization OP Vanadia Supported Rhodium Catalysts. Studies in Surface Science and Catalysis, 1987, 31, 125-136.	1.5	0
293	Catalytic Production of Single-Walled Carbon Nanotubes, Functionalization, and Incorporation in Polymer Matrices. , 2002, , .		0
294	Controlled growth of SWCNT on solid catalysts with narrow (n,m) distribution. AIP Conference Proceedings, 2004, , .	0.4	0
295	Novel Solid Nanohybrids that Stabilize Oil/Water Emulsions and Catalyze Reactions at the Interface. Materials Research Society Symposia Proceedings, 2010, 1257, 1.	0.1	0
296	Exciton Dynamics in Bundled and Unbundled (6,5) Carbon Nanotubes. , 2006, , .		0